Laser-driven electron recollision is at the heart of the rapidly growing field of attosecond science. The recollision wavepacket is qualitatively described within the strong-field approximation, which commonly assumes tunnelling ionization and plane-wave propagation of the liberated electron in the continuum. However, with increasing experimental sophistication, refinements to this simple model have become necessary. Through careful modelling and measurements of laser-induced recollision holography using aligned N2 molecules, we demonstrate that the continuum electron wavepacket already carries a non-trivial spatial phase structure immediately following ionization. This effect is of rather general character: any molecule and any non-isotropic system that is ionized by a strong laser field will exhibit an offset in the phase of the continuum electron wavepacket. Specifically, this has important implications for any coherent scattering process in molecules, such as high-harmonic generation or laser-induced electron holography.