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Preface

In 1998 we wrote the second edition of the research level text ‘Molecular
Symmetry and Spectroscopy’. The present book is on the broader subject
of molecular symmetry, and it is at the student level. It is designed to ex-
plain the basis for what is called ‘symmetry’ in chemistry, and to show how
symmetry helps in the solution of problems in spectroscopy and in molecu-
lar orbital theory. A crucial part of the book is concerned with explaining
the relationship between the geometrical symmetry of a molecule, as ex-
pressed using the point group symmetry of its equilibrium structure, and
the true symmetry of a molecule as expressed using the molecular symme-

try group. The elements of the molecular symmetry group involve nuclear
permutations and the space fixed inversion operation called E∗. We aim at
giving a balanced account of molecular symmetry using both point groups
and molecular symmetry groups.

The book is organized into four parts. Part 2 introduces geometrical
(point group) symmetry and true symmetry, and discusses how point group
symmetry derives by approximation from true symmetry. Part 3 shows how
these two symmetries are used in solving problems. These two parts could
be a book in themselves, but we felt it appropriate to add the introductory
part 1 in order to provide the reader with a brief account of spectroscopy,
quantum mechanics and the derivation of molecular wavefunctions. In the
final part 4 we develop more advanced ideas, and discuss current research
on symmetry; the latter focusses on the attempts that are being made,
using atomic and molecular spectroscopy experiments, to determine the
extent of the breakdown of each of the symmetries that are invoked in
describing matter.

Throughout the text we introduce ‘shadow boxes’ such as this to
focus attention on a particularly significant statement.

At the end of each chapter in parts 1, 2 and 3, we have included
problems involving the application of the ideas developed in the chapter.

vi
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We are grateful to those at IOP who suggested that we write this
student text, and we appreciate their encouragement in the completion of
the project. PRB thanks the Alexander von Humboldt Foundation whose
award allowed him to spend time at the University of Wuppertal during
which part of the book was written.

Many colleagues and friends have given us advice and help for which
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PART 1

SPECTROSCOPY AND THE

QUANTUM STATES OF

MOLECULES



Chapter 1

Molecular spectroscopy

The study of the extent of the absorption, emission and scattering of elec-
tromagnetic radiation by matter, as a function of the wavelength of the
radiation and of the nature of the matter, is the subject of spectroscopy.
We concentrate on situations involving weak electromagnetic radiation1

and gas phase molecular samples. In these circumstances classical theory
is used to describe the radiation and quantum mechanics to describe the
molecules and their interaction with the radiation.

The classical theory of electromagnetic radiation is based on Maxwell’s
1860’s theory of the electromagnetic field. Electromagnetic radiation con-
sists of oscillating electric and magnetic fields by virtue of which it carries
electric and magnetic energy from a source to a detector. The electric and
magnetic fields that constitute the radiation oscillate at the same frequency
ν [in units of cycles s−1 or hertz (Hz)]; these fields oscillate perpendicular
to each other and to the direction of propagation of the radiation. In a
vacuum, radiation propagates at the speed of light c (=299 792 458 m s−1),
and the distance between adjacent field oscillation crests is the wavelength
λ, where

λ = c/ν. (1.1)

1.1 Molecular spectra

Electromagnetic radiation emitted from a region of auroral activity in the
upper atmosphere of Jupiter can be dispersed to yield an emission spectrum

such as shown in figure 1.1. An emission spectrum is a plot of the inten-
sity of the radiation emitted from a source as a function of its wavelength,
frequency, or wavenumber ν̃ (ν̃ = 1/λ; invariably quoted in cm−1 units).
Figure 1.2 is part of the absorption spectrum of carbon monoxide CO at 300
K plotted as transmittance (see below) vs. wavenumber. Figure 1.3 is part
of the Raman spectrum of methane CH4. A Raman spectrum is obtained

1 ‘Weak’ is defined at the end of section 1.5, where we discuss power broadening.

2
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Figure 1.1. Part of the emission spectrum from a region of auroral activity in

the upper atmosphere of Jupiter. Adapted from J-P. Maillard et al, Ap. J. 363,

L37 (1990).

Figure 1.2. Part of the absorption spectrum of carbon monoxide at 300 K.

by illuminating a sample with monochromatic radiation (the exciting ra-
diation), and measuring the intensity of the dispersed scattered radiation
as a function of its difference (or shift) in frequency or wavenumber from
that of the exciting radiation. These are the three most common types of
molecular spectra, and they consist of spectral lines each having a position,
intensity and shape.

Absorption spectra involve a measurement of transmittance as a func-
tion of frequency, wavelength or wavenumber; an example is given in fig-
ure 1.2. Transmittance is defined with the help of the Lambert-Beer law,
which states: If a monochromatic and parallel beam of electromagnetic
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Figure 1.3. Part of the Raman spectrum of methane. Adapted from

A. Owyoung et al, Chem. Phys. Lett. 59, 156 (1978).

Figure 1.4. A laboratory absorption spectrum of H+

3 in an electrical discharge

through H2. Taken from A. R. W. McKellar and J. K. G. Watson, J. Mol.

Spectrosc. 191, 215 (1998). The emission feature at 2469 cm−1 is caused by H

atoms, and the other weaker emission features are caused by H2.
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radiation at wavenumber ν̃ with intensity I0(ν̃) passes through a length l
of gas at a concentration c, the transmitted radiation has intensity Itr(ν̃)
given by

Itr(ν̃) = I0(ν̃) exp[−lcǫ(ν̃)], (1.2)

where the function ǫ(ν̃) is the absorption coefficient. The transmittance τ
is defined as the ratio

τ =
Itr(ν̃)

I0(ν̃)
= exp[−lcǫ(ν̃)]. (1.3)

Figure 1.4 is a laboratory absorption spectrum of H+
3 in an electrical

discharge through hydrogen gas. Comparing the Jupiter emission spectrum
in figure 1.1 with this laboratory spectrum it is clear that H+

3 ions are
present in the atmosphere of Jupiter during an aurora.2

The analytical use of spectroscopy is easy to understand, and is based
on the fact that each molecule has a unique spectrum that character-
izes it. Molecular spectra also tell us the temperature of the sample
and its concentration. Using quantum mechanics, the spectrum of
a molecule can be interpreted to give the structure, bond strengths
and other properties, of the molecule involved.

1.2 The energies of molecules in the gas phase

We think of a molecule in a gas sample at a particular instant in time as
moving with a certain speed, and as having a certain amount of internal
energy. The internal energy can be approximately separated as the sum
of the rotational energy, the vibrational energy and the electronic energy.
The rotational energy is the kinetic energy of the overall rotational motion
of the molecule, the vibrational energy results from the relative motions of
the nuclei, and the electronic energy is the energy of the electrons as they
orbit the nuclear framework. The internal energy is called the rotation-
vibration-electronic energy, or the rovibronic energy for short.

A molecule with massM and speed v moving in an unconstrained way
in free space has translational energy Mv2/2; this energy can assume any
value between zero and infinity. In contrast, the internal energy is quan-

tized, i.e., only certain values of the internal energy occur, characteristic

2 The rotational temperature of the H+

3
that emits the spectrum shown in figure 1.1

is determined from the spectrum to be about 1000 K, whereas that of the laboratory
spectrum is 287K. Because of this the line intensities below 2600 cm−1 in figure 1.1 are
very different from what they are in the laboratory spectrum.
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of finite motions. The pattern of the discrete internal energies is a unique
characteristic of a molecule, and each molecule has a ‘fingerprint’ of internal
energy levels. In figure 1.5 the lowest rotational energy levels for the CO,
H2O, CH3D and CH4 molecules are shown. In order to be able to relate
molecular energy level separations directly to the wavenumber positions of
the related spectral lines [see equation (1.7) and the discussion after it],
the energies in figure 1.5 are divided by hc, where h (=6.626 069 3 × 10−34

J s) is Planck’s constant, and they are quoted in cm−1 units.

Figure 1.5. The possible rotational energy levels below 300 cm−1 for several

simple molecules.

For small strongly bound molecules like those in figure 1.5 the rota-
tional energy level spacings divided by hc are about 1 to 50 cm−1, and
the vibrational energy level spacings divided by hc are about 1 000 to 4 000
cm−1. For closed shell molecules the electronic energy level spacings di-
vided by hc are about 20 000 to 100 000 cm−1. For larger, heavier, weakly
bound or open shell molecules, smaller energy level spacings occur.

As an aside here, the division of the electromagnetic spectrum into
three main regions roughly reflects the division of molecular energies into
rotational, vibrational and electronic energies. These three regions are the
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microwave region (wavenumbers from 0.1 to 1 cm−1), the infrared region
(wavenumbers from 102 to 104 cm−1), and the visible/ultraviolet region
(wavenumbers from 104 to 106 cm−1). Other regions are the radiofrequency
region (below 0.1 cm−1), the millimeterwave region (from 1 to 102 cm−1),
and the X-ray and γ-ray regions (above 106 cm−1).

In a gas sample the speed, and hence translational energy, of each
individual molecule is continually changing as a result of collisions with
other molecules and with the walls of the containing vessel. However,
because of the large number of molecules in a gas sample, the distribution
of speeds remains constant for an isolated sample at thermal equilibrium.
For example, in an isolated sample of carbon monoxide gas at thermal
equilibrium at 300 K, at any instant in time, 19.3% of the molecules will
have speeds between 400 and 500 m/s, whereas 1.0% of the molecules will
have speeds between 0 and 100 m/s, and 1.8% of the molecules will have
speeds between 900 and 1000 m/s.

Figure 1.6. The distribution of translational speeds for the CO molecule at

temperatures of 10 (——), 300 (- - - -) and 1000 K (· · · · · ·).

The expression for the distribution of speeds in an isolated ideal gas
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sample at thermal equilibrium can be calculated using the methods of sta-
tistical mechanics, and it is called the Maxwell distribution of speeds. This
distribution is such that the probability of a molecule having speed between
v and v+dv is given by P (v)dv, where

P (v) = 4π(M/2πkT )3/2v2e−Mv2/2kT . (1.4)

In this equation k (= 1.380 650 5 × 10−23 JK−1) is the Boltzmann con-
stant, M is the mass of the molecule, and T is the absolute temperature.
Equation (1.4) was used to calculate the percentages given in the preceding
paragraph for the distribution of speeds of CO molecules at 300 K.

In figure 1.6 the distribution of translational speeds at temperatures
of 10, 300 and 1000 K for the CO molecule is plotted. Because of the v2

factor in equation (1.4) no molecule has zero speed, and because of the
exponential factor no molecule has infinite speed. In between there is a
maximum at the most probable speed given by (2kT/M)1/2. For higher
temperatures, or lower mass, the most probable speed increases, and the
whole distribution spreads out and moves to higher speeds.

When a molecule suffers an inelastic collision it changes its internal
(rovibronic) energy as well as its speed. For a large number of molecules
at thermal equilibrium, the collisions between the molecules distribute the
molecules among their internal energy states in a way that reflects the
temperature and the Maxwell distribution of speeds so that at any instant
the fraction F (Ei) of the molecules in the internal energy level Ei is given
by the Maxwell-Boltzmann distribution law:

F (Ei) =
gie

−Ei/kT

∑

j gje
−Ej/kT

, (1.5)

where the sum in the denominator (the denominator is called the partition

function) runs over all the discrete possible energies Ej ; each Ej is only
counted once in the sum. The value of gi is the number of states having
energy Ei; it is called the degeneracy of the energy level Ei [see equa-
tion (2.72), and the discussion after it, for an example of a state that has
gi>1]. Figure 1.7 shows the fraction F (Ei) of CO molecules, at thermal
equilibrium, in each of its rotational states (see figure 1.5), for tempera-
tures of 10, 300 and 1000 K. At low temperatures very few rotational energy
states are populated.
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Figure 1.7. The fraction F (Ei) of CO molecules in each of its rotational states

for temperatures of 10 (△), 300 (�) and 1000 K (♦), at thermal equilibrium; see

equation (1.5).

1.3 The positions of spectral lines

An isolated molecule in an initial internal energy state Ei can absorb en-
ergy from a weak electromagnetic radiation field and change its internal
energy state to a final one with energy Ef ; from the conservation of en-
ergy, the radiation absorbed has frequency νif satisfying the Bohr frequency
condition

hνif = Ef − Ei = ∆Eif , (1.6)

where h is Planck’s constant. Put another way, a photon can be absorbed
if the energy of the photon hν is in resonance with the molecular inter-
nal energy difference ∆E concerned. Such resonant absorption causes the
molecule to make a transition from one energy level to another. Dividing
both sides of equation (1.6) by hc gives the wavenumber version as

ν̃if = νif/c = Ef/hc− Ei/hc = ∆Eif/hc, (1.7)
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where ν̃if is the wavenumber of the radiation. Thus

In an absorption spectrum the wavenumber of every spectral line
gives the difference between two internal molecular energies divided
by hc. Internal energies divided by hc, and quoted in cm−1 units,
are called term values; their separations can be directly related to the
wavenumber positions of spectral lines in cm−1. For this reason spec-
troscopists generally quote the term values rather than the energies
of molecular states.

The assignment of the upper and lower energy levels of each transi-
tion to their position in the ladder of energy levels of the molecule under
investigation is one of the tasks of experimental molecular spectroscopy.
The ultimate goal here is the determination of the term values of all in-
ternal energy levels for the molecule. The separations of the energy levels
in a molecule can be analyzed to yield molecular properties such as struc-
ture and bond strengths. The discrete line structure of a spectrum shows
directly that the internal energy states are quantized. If there were no
restrictions on the values of the internal energy then the ‘spectrum’ would
exhibit continuous absorption at all wavenumbers with no lines.

1.4 The intensities of spectral lines

The intensity of a spectral line in absorption is proportional to the fraction
of the molecules F (Ei) in the initial energy state Ei of the transition, and at
thermal equilibrium this fraction can be varied, according to equation (1.5),
by changing the temperature. A low temperature sample has just a few of
the lowest levels populated and many molecules are in these levels, so the
spectrum will consist of fewer stronger lines than that obtained for a high
temperature sample. The variation of a spectrum with temperature will
clearly help in its assignment since transitions originating in highly excited
levels (so-called hot transitions) will be stronger at higher temperatures in
a predictable way.

In addition to absorbing resonant radiation, molecules also undergo
resonant stimulated emission. In stimulated emission, radiation of fre-
quency νif stimulates a molecule in an excited energy level Ef to emit
radiation of the same frequency νif , and to drop into a lower energy level
Ei. For this to occur, the energy hνif must be in resonance with the energy
difference (Ef−Ei). This process competes with the absorption process and
reduces the amount of absorption by the multiplicative factor

Rstim(f → i) = 1− exp(−hνif/kT ). (1.8)
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At low frequencies in the GHz region this is an important cause of reduced
absorption intensity.

In a process that is the complete opposite of resonant absorption, the
stimulated emission process can cause the intensity of radiation at fre-
quency νif to be amplified, and this process is used in a laser (Light Ampli-
fication by Stimulated Emission of Radiation). The successful operation of
a laser requires that the excited level at Ef be continually repopulated us-
ing energy from an electrical discharge or other means, and that the nature
of the molecule, and its energy level ladder, be such that the lower level at
Ei be rapidly depopulated so that it does not absorb the lasing radiation.

Apart from the dependence on initial state population and extent of
stimulated emission, the intensity of a line has an intrinsic value called the
line strength S(f←i), see equation (2.87), and this depends on the specific
properties of the two energy states involved. In fact some transitions have
zero line strength. The absorption spectrum of CO shown in figure 1.2 only
involves transitions between adjacent rotational energy levels in figure 1.5;
transitions between nonadjacent rotational energy levels here have zero line
strength and are said to be forbidden. Of all possible transitions only a se-
lection are allowed, and symmetry is used to determine the selection rules

that govern this behaviour. The H+
3 spectra shown in figures 1.1 and 1.4 in-

volve transitions between different vibrational states; transitions between
its rotational energy levels are forbidden by the simplest selection rules.
However, by studying the symmetry properties of the levels the possibility
emerges that very weak transitions can occur between some of the rota-
tional levels of H+

3 . Some transitions are less forbidden than others, and
symmetry can help us understand whether small effects that are normally
neglected can come into play to make a forbidden transition observable.
Symmetry selection rules, and the spectra of CO and H+

3 illustrated here,
are discussed further in chapter 12.

We also show in chapter 12, how the quantitative value of the line
strength depends on molecular properties. For example, the line strength of
a transition between different rotational energy levels depends on the value
of the molecular electric dipole moment [see equation (2.88)], and the line
strength of a transition between different vibrational energy levels depends
on how the value of the dipole moment changes with molecular deformation.
All this information is important in building a complete understanding of
the properties of a molecule.
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By integrating the absorption coefficient over the line one obtains the
expression

I(f ← i) =
8π3NAνif
(4πǫ0)3hc2

gie
−Ei/kT

∑

i gie
−Ei/kT

[

1−exp(−hνif/kT )
]

S(f ← i),

(1.9)
for the intensity of the absorption line for the transition from the state
i with energy Ei, in thermal equilibrium at the temperature T , to the
state f with energy Ef , where hνif = Ef−Ei, NA (= 6.022 141 5 ×
1023 mol−1) is the Avogadro constant, and ǫ0 [= 107/(4π c2) Fm−1,
where c is in m s−1] is the permittivity of free space (also called the
electric constant).

1.5 The shapes of spectral lines

Spectral lines have a finite width and a characteristic shape. Important
causes of line broadening are the Doppler effect, the finite lifetime of molec-
ular energy states, and the power of the radiation.

The molecules in a gas sample are not at rest but have a distribu-
tion of speeds, given by equation (1.4), and the frequency that a molecule
‘feels’ as it moves with speed v relative to the direction of propagation of
radiation having frequency ν0 is shifted by ν0(v/c) because of the Doppler
effect. Molecules moving towards the radiation source will absorb on the
low frequency side of the line centre, and molecules moving away will ab-
sorb on the high frequency side. Making use of equation (1.4) one can
determine that the line shape function arising from the Doppler shifts of
all the molecules in a gas sample is

S(ν) = S(ν0) exp
[

− Mc2

2kT

(ν − ν0
ν0

)2]

(1.10)

for a line centred at ν0. The function in equation (1.10) is a Gaussian
function. It has a full width at half height FWHH (the frequency width of
the line at half the maximum intensity) given by

FWHH =
2ν0
c

(2kT

M
ln2

)1/2

≈ 7.15× 10−7
( T

M/u

)1/2

ν0, (1.11)

where u is the unified atomic mass unit.3

3 1 u = 1.660 538 86×10−27 kg; also called the dalton or the atomic mass constant.



The shapes of spectral lines 13

Around equation (1.8), the process of resonant stimulated emission
was introduced. Molecules also spontaneously emit resonant radiation, and
drop into a lower energy level; any transitions down that is allowed by
the selection rules can occur. As a result, molecular energy levels have
a finite natural radiative lifetime. This has the effect of broadening the
energy levels and spectral lines; the full width at half height is related to
the lifetime τ in ps by the relation

FWHH/cm−1 ≈ 10.6

τ/ps
or FWHH/GHz ≈ 318

τ/ps
. (1.12)

Spontaneous emission from an upper level having energy Ef to a lower level
having energy Ei occurs with the emission of radiation having frequency
νif that satisfies equation (1.6). The rate of spontaneous emission is pro-
portional to ν3if and so this lifetime is shorter for highly excited levels. The
lifetime of a state can also be reduced by predissociation, which is a process
whereby a molecule falls apart after a certain time. This process can occur
only if the state has an energy greater than the dissociation energy of the
molecule. Predissociation leads to the appearance of very broad diffuse

lines in a spectrum.
Collisions that change the internal energy reduce the lifetime of a state.

The collisional lifetime (the mean time between collisions) is reduced, and
the linewidth increased, by raising the gas pressure; this cause of broad-
ening is thus referred to as pressure broadening. At low pressures (less
than about 10 Torr4), pressure broadening (or natural radiative lifetime
broadening) gives rise to a Lorentzian lineshape function

S(ν, ν0) =
1

π

[ ∆ν

(ν0 − ν)2 + (∆ν)2

]

(1.13)

where ∆ν = 1/(2πτ), τ is the lifetime, and ν0 is the central frequency;
the full width at half height 2∆ν is 1/(πτ) which is given by the second of
equations (1.12).

The simultaneous occurrence of Doppler and lifetime broadening
leads to a line shape that is a convolution of the two lineshape func-
tions called a Voigt function. A detailed treatment of pressure broad-
ening for higher pressures leads to a more complicated unsymmetrical
lineshape function, and a small shift in the centre frequency, that can
both be related to the nature of the intermolecular forces.

This discussion of lineshapes, and the development of equation (1.9)
for the intensity of an absorption line, assume that the radiation is weak.

4 1 Torr ≈ 133.322 Pa.
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By definition, the intensity of the radiation is weak if the absorption is a
linear function of that intensity, i.e., if the transmittance is independent of
the intensity of the radiation. As the power of the radiation is increased
the molecules absorbing in the centre of the absorption line (where the
absorption is the greatest) will start to absorb radiation at a greater rate
than that at which they can return to the lower level of the transition
to achieve thermal equilibrium. As a result the centre of the absorption
line will start to saturate and the line will broaden; this is called power

broadening.

1.6 Raman spectra

In figure 1.3 we show part of a Raman spectrum obtained by illuminating
CH4 with monochromatic radiation. In Raman spectroscopy the exciting
radiation, whose wavenumber we denote ν̃in, is normally visible laser light,
and the sample absorbs and scatters photons from this light beam. As indi-
cated in figure 1.8, we can think of the absorption as transferring molecules
from an initial state with energy Ei, to a highly excited, so-called virtual

state, with energy Evirt. In the vast majority of cases the molecules re-
turn from the virtual state to the initial state as shown in figure 1.8(a)
and photons with wavenumber ν̃out = ν̃in are emitted (or scattered). This
process is known as Rayleigh scattering. However, a tiny fraction of the
molecules (about 1 in 107) transfer from the virtual state to a final state
different from the initial state. When this happens there is a Raman shift

and the scattered radiation has wavenumber ν̃out 6= ν̃in. The energy of the
final state is Ef 6= Ei. We can have Ef > Ei [Stokes Raman scattering,
figure 1.8(b)] so that ν̃out < ν̃in, or Ef < Ei [anti-Stokes Raman scattering,
figure 1.8(c)] with ν̃out > ν̃in. Figure 1.8 shows that the Raman shift

ν̃ = ν̃in − ν̃out = (Ef − Ei) /(hc) (1.14)

corresponds to the energy difference between the final and initial states;
such energy differences can be obtained from Raman experiments.

The intensity of Raman-scattered light is proportional to the Raman
line strength SRaman(f ← i), which is analogous to the line strength of
an absorption or emission transition. The calculation of SRaman(f ← i)
is discussed in section 12.5. The Raman intensity is also proportional to
the intensity of the exciting light, to the concentration of molecules in the
initial state, to ν̃4out, and to the solid angle of observation. In addition, the
intensities observed in a Raman experiment depend on the angle between
the electric field vector of the exciting light and that of the scattered light;
this angle is determined by the experimental set-up.
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Figure 1.8. Energy-level diagrams of (a) Rayleigh scattering, (b) Stokes Raman

scattering, and (c) anti-Stokes Raman scattering.

1.7 Problems

1.1 What is the wavenumber, frequency and energy per photon of (a)
visible radiation having a wavelength of 500 nm, (b) infrared ra-
diation having a wavelength of 5 µm, and (c) microwave radiation
having a wavelength of 5 cm? Quote the frequency in appropriate
units such as THz or GHz, and the wavenumber in cm−1.

1.2 The successive rotational energy levels of the 12C16O molecule de-
picted in figure 1.5 are labeled J = 0, 1, 2, . . ., and to three signifi-
cant figures their energy divided by hc is Ei = 1.92J(J + 1) cm−1;
the degeneracy5 of each level is gi = (2J+1). Calculate the numer-
ator in the Maxwell-Boltzmann distribution function equation (1.5)
for a range of values of J for temperatures T of 10, 30 and 1000 K to
confirm the J-value at which the population is a maximum accord-
ing to figure 1.7; in the appropriate units k ≈ 0.695 cm−1K−1. By
setting equal to zero the differential of the numerator with respect
to J , determine an expression as a function of T for the value of J
at which the population is a maximum. Check that this leads to the
correct result for T = 10, 300 and 1000 K (J has to be an integer).

1.3 Use equation (1.11) to calculate the Doppler widths (FWHH) of
infrared absorption lines of the H+

3 molecule (M/u ≈ 3) and CH4

molecule (M/u ≈ 16) at around 3000 cm−1 at 1000 K and at 10 K.
What would the Doppler widths be for lines of these molecules at
these temperatures at wavelengths around 1 cm (in the microwave

5 This is the m-degeneracy that will be introduced in section 2.7.
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region) or 100 nm (in the ultraviolet region)? The appropriate units
for linewidth are cm−1 in the infrared and ultraviolet, and kHz in
the microwave.

1.4 In a recent experiment6 NH molecules in the excited (A) electronic
state were generated by first forming ground (X) electronic state
molecules using an ArF laser to photolyse NH3, and then using a
tunable dye laser to pump NH from the X-state up to the A-state.
NH molecules in the A-state then emit fluorescent radiation as they
drop back down to the X-state, and the intensity of this radiation
at thermal equilibrium was found to decay according to

IF (t) ∝ n(t) = n(0)e−t/τeff , (1.15)

where t is time. By making measurements at five different NH3

pressures between 2-10 Pa, the decay rate was found to fit the ex-
pression

1/τeff = 1/τ + k nNH3
, (1.16)

where τ is the radiative lifetime, k is a constant, and nNH3
is the

number density of NH3 molecules. It was found, for a particular
rotation-vibration level of the A-state, that τ = 438 ns and k =
6.7×10−10 cm3 s−1. Plot this lifetime, and the linewidth of the
emission line, as a function of NH3 pressure. At room temperature,
nNH3

≈ 2.4×1015 cm−3 for a pressure of 10 Pa.

6 A. Hake and F. Stuhl, J. Chem. Phys. 117, 2513 (2002).



Chapter 2

Quantum mechanics

2.1 The Schrödinger equation

The equation

d

dx
eanx = an e

anx (2.1)

is an example of an eigenvalue equation; the operator d/dx acting on the
function eanx gives, as result, a constant “an” times the function. In gen-
eral, an eigenvalue equation has the form

Ôψn = Onψn, (2.2)

where Ô is a differential operator, ψn is a function, and On is a constant. A
function ψn that satisfies this equation is an eigenfunction of the operator
Ô, and the constant numerical factor On is the eigenvalue of the operator
Ô appropriate for the eigenfunction ψn; the subscript n (= 1,2,3, etc.) la-
bels the different solutions. Restricting the eigenfunctions of an eigenvalue
equation so that they have certain properties can lead to the eigenvalues
having discrete values like molecular energies.

Schrödinger postulated the way of setting up an eigenvalue equation
for a molecule, and the way of interpreting and restricting the eigen-
functions, so that the eigenvalues are the molecular energies.

This special eigenvalue equation has come to be called the Schrödinger

equation.

17
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2.2 The postulates of quantum mechanics

Quantum mechanics is used to describe nature at the atomic and molecular
level, in which there is quantization of the values of observables O such as
energy and angular momentum. The theory of quantum mechanics leads
to quantization by introducing rules or postulates concerning the way op-
erators are set up to represent observables, and the way the eigenfunctions
are restricted and interpreted.

Using classical mechanics for an atom or molecule that consists of l
particles (electrons and nuclei), labeled r = 1,2,. . .,l with mass mr, any
observable can be written as a function of Cartesian coordinates Xr, Yr

and Zr, and momenta PXr (=mrẊr =mrdXr/dt, where t is time), PYr and
PZr. The first postulate of quantum mechanics states that if one replaces
the momenta PXr, PYr and PZr in the classical expression for an observable
O, by the partial differential operators P̂Xr, P̂Yr and P̂Zr according to the
rules

P̂Xr = −i~∂/∂Xr, (2.3)

P̂Yr = −i~∂/∂Yr, (2.4)

and

P̂Zr = −i~∂/∂Zr, (2.5)

where i =
√
−1 and ~ = h/2π, then the resultant differential operator Ô

represents the observable O from which it was derived. If the observable
depends only on coordinates, and not on momenta, then the expression for
the quantum mechanical operator is identical to the classical expression
for the observable. The operator that represents the energy is called the

Hamiltonian operator, or simply the Hamiltonian.

The second postulate of quantum mechanics states that the only pos-
sible values for an observable are the eigenvalues of the operator that rep-
resents it when the eigenfunctions ψn are restricted to be single valued and
when they are interpreted to be such that

Pndτ = ψ∗
nψndτ = |ψn|2dτ (2.6)

is the probability that ψn has its coordinates in the volume element dτ .
The volume element for integration, dτ , is a short hand notation in which,
for example, if the functions ψn were expressed in an l-particle Cartesian
coordinate space (X1,Y1,Z1,. . .,Xl,Yl,Zl),

dτ = dX1dY1dZ1 . . . dXldYldZl. (2.7)

By appropriate transformations dτ can be expressed in any coordinate
system.
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It is often asserted that a postulate of quantum mechanics is that the
eigenfunctions be square integrable, i.e., that

∫

|ψn|2dτ <∞, (2.8)

but this is only true for bound (and quantized) states; see, for example,
the eigenfunctions given in equation (2.68) for a case in which there is no
quantization. When there is quantization, we normalize the eigenfunctions
so that

∫

Pndτ =

∫

ψ∗
nψndτ =

∫

|ψn|2dτ = 1, (2.9)

in order that the total probability over all space be unity. When the eigen-
functions are not square integrable the ratio of |ψn|2 at two different points
is the ratio of their probabilities.

With this restriction and interpretation of the eigenfunctions, the pos-
sible values of the energy are the eigenvalues En of the Hamiltonian oper-
ator Ĥ:

Ĥψn = Enψn. (2.10)

This equation is the (time independent) Schrödinger equation or wave equa-
tion, and the eigenfunctions ψn are the wavefunctions that represent (or
simply are) the state of the system. The En are the possible stationary

state energies of the system. The state having the lowest energy is called
the ground state and all other states are called excited states.

The second postulate still allows us to multiply a wavefunction by
exp(iθ), where θ is any real constant, without changing Pn = |ψn|2, since
|exp(iθ)|2 = 1. The factor exp(iθ) is called a phase factor, and a wavefunc-
tion multiplied by a phase factor is the same state. However, it is necessary
to define the phase factor used, and to be consistent, because relative phase
factors of wavefunctions can be significant.

A state φn might not be an eigenfunction of a particular operator Ô.
The third postulate of quantum mechanics concerns such a situation, and
it states that the expected (or most probable) value of an observable O for
a system in a state φn is the integral of the product φ∗nÔφn, where Ô is the
operator that represents O; such an integral is called an expectation value,
and we write it as

Onn = 〈n|Ô|n〉 =
∫

φ∗nÔφndτ. (2.11)

The fourth postulate, concerning the time-dependence of wavefunc-
tions, is given in section 14.1, and the fifth, concerning the symmetry of
wavefunctions under the effect of the permutation of identical particles, is
given in section 9.1.
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2.2.1 Operators and eigenfunctions

We summarize here some important facts and definitions. An operator Ô
is Hermitian if

∫

ψ∗
mÔψndτ =

∫

(Ôψm)∗ψndτ =

∫

(ψ∗
nÔψm)∗dτ. (2.12)

The eigenvalues of a Hermitian operator are real, and operators correspond-
ing to real physical observables must be Hermitian. It can be proved that
the eigenfunctions of a Hermitian operator that have different eigenvalues
are orthogonal, i.e., they are such that

∫

ψ∗
mψndτ = 0 (2.13)

unless m = n. Equations (2.9) and (2.13) are summarized by saying that
for a set of orthonormal functions ψ1, ψ2, ψ3, etc.

∫

ψ∗
mψndτ = δmn, (2.14)

where δmn is the Kronecker delta.
Acting on a function of X , φ(X) say, with the operator difference

(XP̂X − P̂XX) gives

(XP̂X − P̂XX)φ(X) =
[

X(−i~∂/∂X)− (−i~∂/∂X)X
]

φ(X)

= − i~X
∂φ(X)

∂X
+ i~

∂

∂X

[

Xφ(X)
]

= − i~X
∂φ(X)

∂X
+ i~

[

φ(X) +X
∂φ(X)

∂X

]

= i~φ(X). (2.15)

We can write
(XP̂X − P̂XX)φ(X) = i~φ(X), (2.16)

and formally ‘cancel’ out the φ(X) from each side of the equation to obtain
the operator equation:

XP̂X − P̂XX = i~. (2.17)

An operator equation means that each side of the equation produces the
same result when it acts on a function. Two operators Ô1 and Ô2 commute
if the following operator equation is true:

(Ô1Ô2 − Ô2Ô1) = 0. (2.18)

We introduce the notation

[

Ô1, Ô2

]

= (Ô1Ô2 − Ô2Ô1), (2.19)
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where
[

Ô1, Ô2

]

is called the commutator of Ô1 and Ô2. Thus the commu-

tator of X and P̂X is not zero, and these two operators do not commute.
Observables are represented by Hermitian operators, and special care

must sometimes be exercised when using the first postulate to set up an op-
erator. For example, an expression such as X P̂X is not Hermitian because
X and P̂X do not commute. In such a case it is necessary to properly sym-
metrize the classical expression before converting it to quantum mechanical
form. For example, instead of XPX one must write (XPX + PXX)/2.

If a stationary state energy level En is k-fold degenerate then there
are k linearly independent1 and orthogonal eigenfunctions ψn1, ψn2,. . .,
ψnk having the same energy eigenvalue En of the Hamiltonian operator
Ĥ . Any other eigenfunction ψp having eigenvalue En can only be a linear
combination of this complete set of k functions, i.e.,

ψp =

k
∑

j=1

cpjψnj , (2.20)

where the cpj are constants. For the level En we would have gi = k in
equation (1.5). Stationary states can be nondegenerate or they can be
degenerate. If the level En is non-degenerate, and ψn is an eigenfunction
with eigenvalue En, then the only other functions that can be eigenfunc-
tions having eigenvalue En are of the form cψn where c is a constant. If ψ1,
ψ2, . . . are eigenfunctions of Ĥ , then linear combinations of them can be
chosen that are also simultaneously the eigenfunctions of any operator that
commutes with Ĥ . Conversely if two operators (such as X and P̂X) do not
commute then there are no nontrivial functions that are simultaneously the
eigenfunctions of both.

2.3 Diagonalizing the Hamiltonian matrix

It frequently happens that we know a set of functions ψ0
n say, that are

approximately the eigenfunctions of a Hamiltonian Ĥ , i.e. Ĥψ0
n = E0

nψ
0
n

+ X , where X≪E0
nψ

0
n. Such a set of known functions are called basis

functions, and one can use them to determine the true eigenfunctions and
eigenvalues by setting up and diagonalizing the Hamiltonian matrix; we
now explain this procedure using some definitions and results from matrix
algebra that are collected together in section 2.9.

Consider a Hamiltonian Ĥ and a set of orthonormal basis functions
ψ0
n (where n = 1, 2, 3, . . .). We introduce the integrals

Hmn = 〈m|Ĥ |n〉 =
∫

(ψ0
m)∗Ĥψ0

ndτ, (2.21)

1 These k functions are linearly independent if there is no relation of the type c1ψn1 +
c2ψn2 + · · · + ckψnk = 0 (apart from the trivial one with all ci = 0) connecting them.
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which can be arranged in a matrix where m and n are the row and col-
umn indices, respectively; we call such integrals matrix elements of the
Hamiltonian, and the entire matrix is called the Hamiltonian matrix. The
diagonal matrix elements are the expectation values of the energy for the
basis functions, and we write

Hnn = 〈n|Ĥ |n〉 = E0
n. (2.22)

For convenience, we organize the matrix so that E0
1≤E0

2≤E0
3 . . ..

The values of the matrix elements would change if we used different
basis functions. For example, if we set up the Hamiltonian matrix using the
normalized eigenfunctions ψn of Ĥ , the diagonal matrix elements would be
the eigenvalues, and the off-diagonal matrix elements would vanish. The
Hamiltonian matrix would then be said to be diagonal.

It is the presence of nonvanishing off-diagonal matrix elements that
spoils the functions ψ0

n as eigenfunctions. However, the degree to which
the functions are spoiled does not only depend on the magnitudes of the
off-diagonal matrix elements between them, but it also depends on the
differences between their diagonal matrix elements. To explain this we
will first show how the eigenfunctions and eigenvalues can be determined
from the values of the Hamiltonian matrix elements, and then focus on
a simple 2×2 example. The 2×2 example is extremely important since
it is used to analyze interactions or perturbations between energy levels
caused by a previously neglected part of the Hamiltonian which gives rise
to a nonvanishing off-diagonal matrix element. In such circumstances the
states ψ0

n would be called zero order states.
We wish to determine the eigenfunctions and eigenvalues, ψj and Ej

(j = 1, 2, 3, . . .), of the Hamiltonian Ĥ , using the complete set of basis
functions ψ0

n. Since the basis set is complete, by definition we can write
the unknown eigenfunctions ψj in terms of them as:

ψj =
∑

n

Cjnψ
0
n, (2.23)

where the Cjn are the eigenfunction coefficients that remain to be deter-

mined. Since Ĥψj = Ejψj ,

Ĥ
[

∑

n

Cjnψ
0
n

]

= Ej

[

∑

n

Cjnψ
0
n

]

. (2.24)

To determine the ψj and Ej we proceed as follows: Multiply each side of

equation (2.24) on the left by (ψ0
m)∗, make use of the fact that Ĥ and the

Cjn commute with each other, and finally integrate each side over all space.
Using equations (2.21) and (2.14) this gives

∑

n

CjnHmn = Ej

∑

n

Cjnδmn, (2.25)
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which can be rewritten as the matrix product

∑

n

(Hmn − δmnEj)C̃nj = 0, (2.26)

where C̃ is the transpose of C; see section 2.9. Apart from the useless
solution that all elements of C̃nj = 0, the solution obtained is the following
secular equation for the eigenvalues Ej :

|Hmn − δmnE| = 0, if E = Ej . (2.27)

This states that the determinant2 of the matrix (Hmn − δmnE) vanishes
if E is an eigenvalue. This enables us to determine the eigenvalues of Ĥ ,
and an l-dimensional Hamiltonian matrix leads to a secular equation with
l eigenvalues. The Ej are the eigenvalues both of the operator Ĥ and of
the matrix H that represents it using a basis set.

By substituting the eigenvalues Ej one at a time into equation (2.26)

we obtain l simultaneous equations (as m = 1 to l) for the C̃nj , and we

obtain the elements in the jth column of the matrix C̃. Since C̃nj = Cjn

these coefficients form the jth row of the matrix C; these are the coefficients
of the basis functions ψ0

n in the eigenfunction ψj , and we can appreciate
how well (or badly) ψ0

j represents ψj from their values. The orthonormality
of the functions demands that the elements of C satisfy

∑

n

C∗
jnCkn = δjk, (2.28)

which means that the matrix C is unitary; see section 2.9.
Using matrix notation it can be shown that the elements of the matrix

C are such that
CHC−1 = Λ (2.29)

whereH is the Hamiltonian matrix, and Λ is a matrix having non-vanishing
diagonal elements Λjj = Ej (the eigenvalues) and Λij = 0 if i 6=j. We say
that the similarity transformation of the Hamiltonian matrix H by the
matrix of eigenfunction coefficients C in equation (2.29) diagonalizes H to
produce the diagonal matrix Λ of eigenvalues. The process of diagonalizing
a Hamiltonian matrix in a basis set is a routine procedure, once we have de-
termined the elements of the Hamiltonian matrix, and standard computer
routines are available.

As a simple example we consider a 2-dimensional (Hermitian) Hamil-
tonian matrix for the zero order states ψ0

1 and ψ0
2 :

[

E0
1 H12

H∗
12 E0

2

]

(2.30)

2 See equation (2.95) for the definition of a determinant.
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Assuming, for simplicity, that H12 is real, equation (2.27) reduces to

(E0
1 − E)(E0

2 − E)−H2
12 = 0, (2.31)

and solving for E, one obtains the two roots:

E1 = E0
1 − S (2.32)

and
E2 = E0

2 + S, (2.33)

where E0
1≤E0

2 , the energy shift

S =
1

2

(

√

4H2
12 +∆2 −∆

)

, (2.34)

and ∆ = E0
2−E0

1 is the difference between the diagonal matrix elements.
Using equations (2.26) and (2.28) to obtain the eigenfunction coefficients
one gets

ψ1 = c+ψ0
1 − c−ψ0

2 , (2.35)

and
ψ2 = c+ψ0

2 + c−ψ0
1 , (2.36)

where

c± =
1√
2

[

1± ∆
√

4H2
12 +∆2

]1/2

. (2.37)

The expressions for S and c± depend on both the off-diagonal matrix ele-
ment H12 and the diagonal matrix element difference ∆.

For situations when |H12|≪∆, the leading terms in the binomial ex-
pansion of

√

4H2
12 +∆2 = ∆(1 + 4 H2

12/∆
2)1/2, can be used to give the

approximate solution

S ≈ H2
12

∆
, (2.38)

with

c+ ≈ 1− H2
12

2∆2
, (2.39)

and

c− ≈ H12

∆
. (2.40)

Equations (2.38)-(2.40) are also obtained using second order perturbation
theory (see below) for the 2×2 case.

We can now quantitatively represent the very commonly occurring
phenomenon of a 2×2 energy level interaction or perturbation. The func-
tions ψ0

1 and ψ0
2 would be eigenfunctions of the Hamiltonian if the off-

diagonal matrix element H12 were zero; as H12 grows the two states per-
turb, or repel, or interact with, each other. The lower level E1 moves down,
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the higher level E2 moves up, and the wavefunctions of the two states ψ0
1

and ψ0
2 gradually become more and more mixed in the eigenfunctions ψ1

and ψ2. The extent to which the zero order functions are mixed, and the
amount by which the levels repel each other, depend on the size of the
off-diagonal matrix element H12, and on the zero order energy separation
∆. The above equations allow us to calculate these effects for any values
of H12 and ∆. For ∆ = 0 we obtain c+ = c− = 1/

√
2; we have a fifty-fifty

mixing of the two zero order states and a maximal energy shift of H12. On
the other hand as H12→0, c+ approaches 1 while c− approaches 0; now
ψ1→ψ0

1 and ψ2→ψ0
2 , with energy shifts that go to zero.

Perturbations can involve more than 2 levels interacting simultane-
ously, and a matrix larger than 2×2 will then have to be diagonalized. It
often happens that we have to consider the complete basis set consisting
of an infinite number of functions. Obviously, we can only set up and
diagonalize the Hamiltonian matrix in a finite number of basis functions,
so we have to truncate the matrix. If the size of the truncated matrix is
ntrunc×ntrunc then its diagonalization will yield ntrunc approximate eigen-
values and eigenfunctions. If we are only interested in the lowest p states,
say, then we must choose ntrunc to be much larger than p in order that
this approximate approach leads to satisfactory results for the p states of
interest. This approximate approach is called the variational approach. In
practice, the size ntrunc is increased until a further increase has negligi-
ble effect on the p eigenvalues of interest; the calculation is then said to
have converged. The lowest eigenvalue of the truncated Hamiltonian matrix
Etrunc

lowest will not be precisely equal to the lowest eigenvalue Eexact
lowest of the

Hamiltonian. The variational theorem states that Etrunc
lowest is always above

Eexact
lowest, i.e.,

Etrunc
lowest − Eexact

lowest = ∆E > 0. (2.41)

In a well behaved problem, increasing the number of basis functions reduces
∆E, and Etrunc

lowest converges to Eexact
lowest as the number of basis functions is

increased. The existence of very efficient numerical computer routines for
diagonalizing large matrices make the variational procedure of practical
and general use.

In situations where the off-diagonal matrix elements are small com-
pared to the differences in diagonal matrix elements an alternative pro-
cedure for determining eigenfunctions and eigenvalues called perturbation

theory can be used. In this procedure we write the Hamiltonian operator
as

Ĥ = Ĥ0 + λ Ĥ ′ (2.42)

where the eigenfunctions of Ĥ0 are the known basis functions ψ0
n, and where

Ĥ ′ (called the perturbation) has nonvanishing off-diagonal matrix elements.
By changing the expansion constant λ from zero to one the perturbation is
switched on. In this approach analytical expressions for the eigenfunctions
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and eigenvalues of Ĥ are obtained as power series in λ involving matrix
elements of Ĥ ′ in the basis functions ψ0

n, and differences between diagonal
matrix elements. Truncating these expressions at the terms quadratic in
λ produces the results of second order perturbation theory, and this is
normally where the procedure is terminated. The results obtained using
perturbation theory are useful if Ĥ ′ has a small effect, and one can gain an
understanding of the effects of Ĥ ′ from the analytical expressions obtained.
Perturbation theory is used in the development of the effective rotational

Hamiltonian (see section 11.5). This Hamiltonian is crucially important in
the practical analysis of spectra.

2.4 The molecular Schrödinger equation

The classical expression for the total energy of a molecule consisting of l
particles, nuclei and electrons, is

Etotal = T + V. (2.43)

The kinetic energy is given by

T =
1

2

l
∑

r=1

mr(Ẋr
2 + Ẏr

2 + Żr
2), (2.44)

where particle r has mass mr (the mass of an electron being me), and Ẋr,
Ẏr and Żr are the components of its velocity in a space-fixed XYZ axis
system. In SI units, the electrostatic potential energy that results from the
repulsions and attractions between the particles is

V =
l

∑

r<s=1

CrCse
2

4πǫ0Rrs
, (2.45)

where Cre is the charge3 of particle r (the charge on an electron is −e),
Rrs is the interparticle distance given by

Rrs = [(Xr −Xs)
2 + (Yr − Ys)

2 + (Zr − Zs)
2]1/2, (2.46)

and ǫ0 is the permittivity of free space (introduced on page 12).
The energy expression T + V can be separated into two parts: the

translational energy and the internal (rovibronic) energy. In chapters 3, 4
and 5, we discuss the separation of the rovibronic energy into electronic,
vibrational and rotational parts. Such separations of variables are of central
importance in making the equations that occur easier to handle and to
understand; they always involves making coordinate changes.

3 The elementary charge e = 1.602 176 53×10−19 C; this is the charge on a proton.
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2.5 The separation of translational energy

Whenever we make a change of coordinates there are two ways of proceed-
ing: (I) First to set up the quantum mechanical molecular Hamiltonian in
the initial coordinates and then to change to the new coordinates in the
resultant differential equation that is the Schrödinger equation using the
chain rule, or (II) First to change coordinates in the classical expression to
obtain the classical energy expression in the new coordinates and then to
set up the quantum mechanical Hamiltonian, and Schrödinger equation, in
the new coordinates. We use method (II) here.

We know that the translational energy is the kinetic energy Mv2/2,
whereM =

∑

rmr is the molecular mass and v is the speed of the molecular
centre of mass through space. To change coordinates so that the molecular
kinetic energy T involves this we must explicitly introduce the coordinates
of the centre of mass, which we call (X0,Y0,Z0). Thus the XYZ coordinates
of the particles are written

Xr = Xr +X0, (2.47)

Yr = Yr +Y0, (2.48)

and
Zr = Zr + Z0, (2.49)

where (Xr, Yr, Zr) are the coordinates of particle r in an XY Z axis system
that is parallel to the space-fixed XYZ axis system4 but which has origin
at the molecular centre of mass (X0,Y0,X0). We must write the kinetic
energy T in terms of the new set of 3l coordinates

X0,Y0,Z0, X2, Y2, Z2, . . . , Xl, Yl, Zl, (2.50)

and their velocities Ẋ0,. . .,Żl, where we have eliminated X1, Y1 and Z1

using

X1 = − 1

m1

l
∑

r=2

mrXr, (2.51)

with similar equations for Y1 and Z1. The (3l−3) coordinates X2, Y2,
Z2,. . ., Xl, Yl, Zl are the internal coordinates; they specify the positions of
the particles relative to the centre of mass of the molecule.

Using equations (2.47)-(2.49) for r = 2 through l gives:

1

2

l
∑

r=2

mr(Ẋr
2 + Ẏr

2 + Żr
2) =

1

2

l
∑

r=2

mr(Ẋr
2 + Ẏr

2 + Żr
2)

4 Be careful to notice the font distinction here. We use upright font for the XYZ axes;
they have space-fixed origin and space-fixed orientation. We use italic font for the XY Z
axes that are parallel to them and which, therefore, have space-fixed orientation, but
which have origin at the molecular centre of mass.
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+

l
∑

r=2

mr(ẊrẊ0 + ẎrẎ0 + ŻrŻ0)

+
1

2

(

l
∑

r=2

mr

)

(Ẋ0
2 + Ẏ0

2 + Ż0
2). (2.52)

Using equation (2.51), and the similar equations for Y1 and Z1, in equa-
tions (2.47)-(2.49), we obtain

1

2
m1(Ẋ1

2 + Ẏ1
2 + Ż1

2) =
1

2m1

l
∑

r,s=2

mrms(ẊrẊs + ẎrẎs + ŻrŻs)

−
l

∑

r=2

mr(ẊrẊ0 + ẎrẎ0 + ŻrŻ0)

+
1

2
m1(Ẋ0

2 + Ẏ0
2 + Ż0

2). (2.53)

Adding equations (2.45), (2.52) and (2.53) gives

Etotal = Ttrans + Trve + V, (2.54)

where V is expressed in terms of the coordinates X2,. . .,Zl. In equa-
tion (2.54) the translational kinetic energy is

Ttrans =
1

2
M(Ẋ0

2 + Ẏ0
2 + Ż0

2), (2.55)

and the internal (rovibronic) kinetic energy that results from the motion
of the particles in the molecule relative to the molecular centre of mass is

Trve =
1

2

l
∑

r=2

mr(Ẋr
2 + Ẏr

2 + Żr
2)

+
1

2m1

l
∑

r,s=2

mrms(ẊrẊs + ẎrẎs + ŻrŻs). (2.56)

Trve and V do not involve the coordinates or velocities of the centre of
mass, and Ttrans does not involve the internal coordinates or velocities.

There is a complete separation of the internal and translational de-
grees of freedom in the energy expression.

We can write the total energy as

Etotal = Etrans + Erve (2.57)
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where the translational energy Etrans is the pure kinetic energy term Ttrans
given in equation (2.55); there is no potential energy contribution to the
translational energy for a molecule moving in an unconstrained way in field
free space. The rovibronic energy is

Erve = Trve + V. (2.58)

2.5.1 The translational Schrödinger equation

To follow the procedure outlined above [see equations (2.3)-(2.10)] for ob-
taining the translational Schrödinger equation we begin by expressing the
classical energy, given in equation (2.55), in terms of momenta Pα rather
than velocities in order to obtain it in Hamiltonian form:

Htrans =
1

2M
(PX0

2 + PY0
2 + PZ0

2), (2.59)

where PX0 = M Ẋ0 etc. To obtain the Schrödinger equation we replace
the momenta PX0, PY0 and PZ0 by the partial differential operators P̂X0

= −i~∂/∂X0, P̂Y0 = −i~∂/∂Y0, P̂Z0 = −i~∂/∂Z0, in Htrans to yield the
Hamiltonian operator for the translational motion:

Ĥtrans =
1

2M
(P̂X0

2 + P̂Y0
2 + P̂Z0

2)

= − ~
2

2M

( ∂2

∂X0
2
+

∂2

∂Y0
2
+

∂2

∂Z0
2

)

, (2.60)

and we set up the eigenvalue equation

ĤtransΦ
(n)
trans(X0,Y0,Z0) = E

(n)
transΦ

(n)
trans(X0,Y0,Z0). (2.61)

Equation (2.61) gives the translational Schrödinger equation for a
molecule moving in an unconstrained way in free space. From the second
quantum mechanical postulate the eigenfunctions have to be single valued,

and the relative probabilities must be given by |Φ(n)
trans(X0,Y0,Z0)|2; they

are then the translational wavefunctions of the molecule, and the eigen-

value E
(n)
trans is the translational energy of the molecule when it is in the

state Φ
(n)
trans(X0,Y0,Z0).

Since Ĥtrans is the sum of three independent terms in X0, Y0 and
Z0, we can separate the translational Schrödinger equation into three by
writing

Etrans = E
(nX )
transX + E

(nY )
transY + E

(nZ )
transZ, (2.62)

and

Φtrans(X0,Y0,Z0) = ψ
(nX)
transX(X0)ψ

(nY )
transY(Y0)ψ

(nZ)
transZ(Z0). (2.63)
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We substitute these two equations into equation (2.61). Making use of the
fact that

∂2

∂X0
2
Φtrans(X0,Y0,Z0) = ψ

(nY )
transY(Y0)ψ

(nZ)
transZ(Z0)

∂2

∂X0
2
ψ
(nX )
transX(X0),

(2.64)
with similar equations for the effects of ∂2/∂Y0

2 and ∂2/∂Z0
2, we can

divide the resultant equation through by Φtrans(X0,Y0,Z0) to obtain the
three independent equations

− ~
2

2M

d2

dX0
2
ψ
(nX)
transX(X0) = E

(nX)
transXψ

(nX )
transX(X0), (2.65)

− ~
2

2M

d2

dY0
2
ψ
(nY )
transY(Y0) = E

(nY )
transYψ

(nY )
transY(Y0), (2.66)

and

− ~
2

2M

d2

dZ0
2
ψ
(nZ)
transZ(Z0) = E

(nZ )
transZψ

(nZ)
transZ(Z0). (2.67)

The translational energy E
(nX)
transX has to be positive and real, and the most

general solution we can write for the eigenfunction of equation (2.65) is

ψ
(nX)
transX(X0) = A cos(kXX0) +B sin(kXX0) (2.68)

or, equivalently,

ψ
(nX)
transX(X0) = C exp(ikXX0) +D exp(−ikXX0) (2.69)

where kX = (2ME
(nX)
transX)

1/2/~, A and B are arbitrary constants, C =
(A−iB)/2 and D = (A+iB)/2. Similar equations can be written for the
eigenfunctions of equations (2.66) and (2.67) so that we have

Etrans =
~
2

2M

(

k2X + k2Y + k2Z
)

. (2.70)

There is no quantization of the translational states of an unconfined
molecule moving in free space. The translational wavefunctions are
plane waves and the eigenvalues (energies) can be any positive real
number.

The above provides a very simple example of what happens when we
separate the coordinates in a Hamiltonian. Here, since the Hamiltonian can
be written as the sum of three independent parts, we have reduced a three
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dimensional Schrödinger equation (2.61) to three separate one-dimensional
Schrödinger equations (2.65)-(2.67). The eigenvalues are obtained as the
sum of the eigenvalues of the one-dimensional Schrödinger equations in
equation (2.62), and the eigenfunctions are obtained as the product of the
one-dimensional eigenfunctions in equation (2.63).

For a molecule confined to remain within a sample cell (which has fi-
nite dimensions) there is quantization of the translational states. To show
how this comes about we consider the situation in which the molecule is
confined within a cube shaped box with side L that has one corner at
the point (X0,Y0,Z0) = (0,0,0) and which lies in the positive octant of
the (X0,Y0,Z0) axis system. In this circumstance the eigenfunctions satisfy
equations (2.63)-(2.69) within the box (i.e. when the X0, Y0 and Z0 coordi-
nates are between 0 and L). However, with the probability interpretation of
the eigenfunctions they must be zero outside the box and must go smoothly

to zero at the walls of the box. From equation (2.68) for ψ
(nX )
transX(X0) we see

that functions that go smoothly to zero at X0 = 0 must have A =0, and
for them also to go smoothly to zero at X0 = L they must also have kXL
= nXπ where nX is a positive integer. Thus for a molecule confined within
this box the translational wavefunctions [from equations (2.63) and (2.68)]
within the box are given by

Φ
(nX,nY,nZ)
trans (X0,Y0,Z0) = N sin

(nXπ

L
X0

)

sin
(nYπ

L
Y0

)

sin
(nZπ

L
Z0

)

,

(2.71)
where nX, nY and nZ must be positive integers, and N is a constant.
Outside the box the translational wavefunctions vanish. The normalizing
constant N is determined to be (8/L3)1/2 by setting the the integral of
|Φtrans|2dτ within the box to be unity since that is the probability of finding
the molecule within the box [see equation (2.9)]. Since kXL = nXπ etc.,
we have the result that

the translational energies of a molecule of mass M constrained to
move within a cube of side L are quantized. They are given by

E
(nX,nY,nZ)
trans =

h2

8ML2
(n2

X + n2
Y + n2

Z), (2.72)

where the quantum numbers nX, nY and nZ are positive integers.

The lowest state has nX = nY = nZ = 1 with energy 3h2/(8ML2), and
the first excited translational state has energy 6h2/(8ML2). The energy
separation is 3h2/(8ML2). This lowest excited state is actually three states
with quantum numbers (nX,nY,nZ) = (2,1,1), (1,2,1) or (1,1,2) which all
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have the same energy; such a state is said to be three-fold degenerate or
to have a degeneracy of three. The separation in energy [3h2/(8ML2)] be-
tween the two lowest states for a 12C16O molecule (mass M ≈ 4.65×10−26

kg) constrained to move in a cubic box with side L = 10−2 m is 3.5×10−38

J. Dividing by hc, and quoting in cm−1, the wavenumber separation is ob-
tained as 1.8×10−15 cm−1. This incredibly small energy separation shows
how the quantization that results from using the rules of quantum mechan-
ics disappears for all practical purposes for systems having macroscopic
dimensions when the rules of classical mechanics are satisfactory.

We can use the above analysis of the energy levels of a particle in
a box to get an approximate estimate of the energy separations involved
when electrons move about within the limits of molecular dimensions, or
when nuclei vibrate in bonds. For an electron (mass M ≈ 9.11×10−31 kg)
constrained to move within a cubic box of side L = 0.3 nm (which gives a
box that has roughly the volume over which an outer electron moves in a
small molecule) the above particle in a box analysis leads to a wavenumber
separation between the two lowest states of 1.01×105 cm−1. For a particle
constrained to move in one dimension within a length L the energy is given
by h2n2/(8ML2) where n = 1, 2, 3, ... (obtained by just considering the
X0 motion, for example, in the above three-dimensional analysis) and the
energy separation between the two lowest states is given by 3h2/(8ML2)
just as for motion within a three-dimensional box. For a proton (mass M
≈ 1.67×10−27 kg) constrained to move in one dimension within a length
of 0.03 nm (which roughly equals the stretching vibrational amplitude in a
molecule) the wavenumber separation between the lowest two energy levels
is 5500 cm−1; a factor of about 1/20th of the electronic wavenumber (or
energy) separation.

The first excited electronic state has an energy much larger than
that of the first excited vibrational state because the electron mass
is so much less than any nuclear mass; this more than compensates
for the fact that electronic motions are less constrained than nuclear
vibrational motions in molecules.

2.6 The rovibronic Schrödinger equation

After separating translation the classical expression for the rovibronic (in-
ternal) energy of a molecule that consists of l particles (nuclei and electrons)
is obtained from equations (2.45), (2.56) and (2.58) as

Erve =
1

2

l
∑

r=2

mr(Ẋr
2 + Ẏr

2 + Żr
2)
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+
1

2m1

l
∑

r,s=2

mrms(ẊrẊs + ẎrẎs + ŻrŻs)

+

l
∑

r<s=1

CrCse
2

4πǫ0Rrs
. (2.73)

Starting with this classical rovibronic energy expression, and using the first
postulate, we obtain the rovibronic Schrödinger equation.

In the rovibronic energy expression Erve the motion of the particles
is constrained so that the centre of mass remains fixed at the origin of
the XY Z axes. The general definition, allowing for constraints, of the
momentum Ps conjugate to the coordinate Qs is

Ps = ∂(T − V )/∂Q̇s. (2.74)

Since the potential energy is independent of the velocities, we obtain PXr =
∂Trve/∂Ẋr, PY r = ∂Trve/∂Ẏr, and PZr = ∂Trve/∂Żr, where Trve is given in
equation (2.56); we do not obtain simple relations such as PXr =MrẊr. In-
verting the equations obtained for the generalized momenta as functions of
the velocities one obtains the velocities as functions of the momenta. Sub-
stituting for the velocities in equation (2.73) leads to the classical Hamilto-
nian Hrve as a function of the coordinates and momenta. Replacing PXr by
P̂Xr = −i~∂/∂Xr, PY r by P̂Y r = −i~∂/∂Yr and PZr by P̂Zr = −i~∂/∂Zr,

the quantum mechanical rovibronic Hamiltonian for an l-particle
molecule is obtained as

Ĥrve = − (ℏ2/2)

l
∑

r=2

(∂2/∂Xr
2 + ∂2/∂Yr

2 + ∂2/∂Zr
2)/mr

+ (ℏ2/2M)
l

∑

r,s=2

(∂2/∂Xr∂Xs + ∂2/∂Yr∂Ys + ∂2/∂Zr∂Zs)

+

l
∑

r<s=1

CrCse
2

4πǫ0Rrs
, (2.75)

where M =
∑

mr is the mass of the molecule.

The rovibronic Schrödinger equation is given by

ĤrveΦrve(X2, Y2, Z2, . . . , Zl) = ErveΦrve(X2, Y2, Z2, . . . , Zl). (2.76)
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In section 3.2 we introduce spin, and it is explained there that be-
cause of the presence of spin, electrons and many nuclei have a magnetic
dipole moment, and that some nuclei have an electric quadrupole moment
as well. The internal energy of a molecule is affected by the presence of
these moments. The term in the Hamiltonian that arises from the fact
that each electron has a spin magnetic dipole moment is called Ĥes, and
the term arising from the presence of the nuclear spin moments is called
Ĥhfs. The principal terms in Ĥes arise from the interaction of the electron
spin magnetic moments with each other (the electron spin-spin interac-
tion), and from their interaction with the magnetic moments generated
by the orbital motion of the electrons (the electron spin-orbit interaction).
Ĥhfs contains similar magnetic terms involving the nuclear spin-spin and
nuclear spin-orbit interactions, as well as terms for nuclear spin-electron
orbit and nuclear spin-electron spin interactions. For nuclei that have an
electric quadrupole moment there is an additional term involving its inter-
action with the electronic charge gradient at the nucleus. Ĥes and Ĥhfs can
give rise to splittings of the energy levels called electronic fine structure
splittings and nuclear hyperfine structure splittings, respectively.

Adding the sum of Ĥes and Ĥhfs to the electrostatic potential energy,
gives the complete electromagnetic interaction energy between the parti-
cles, so that the complete quantum mechanical Hamiltonian for the internal
dynamics of a molecule (that is, everything except translation) is

Ĥint = Ĥrve + Ĥes + Ĥhfs. (2.77)

2.7 The angular momentum operator

The classical observable of orbital angular momentum J for a system of l
particles, in the centre-of-mass axis system, has X component given by

JX =

l
∑

r=1

(YrPZr − ZrPY r), (2.78)

and so the operator for it is given by

ĴX = −i~
l

∑

r=1

(

Yr
∂

∂Zr
− Zr

∂

∂Yr

)

. (2.79)

The operators representing ĴY and ĴZ are obtained from equation (2.79)
by cyclic permutation of X , Y and Z. The square of the orbital angular
momentum operator is given by

Ĵ2 = Ĵ2
X + Ĵ2

Y + Ĵ2
Z . (2.80)
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The commutators [Xr,PXr], [Yr,PY r] and [Zr,PZr ] are each i~, from
equation (2.17), but all other ‘cross commutators’ [Xr,PY r], [PXr,PY r],
[Xr,PXs] etc. are zero. Using these results it can be shown that the oper-
ator Ĵ2 commutes with ĴX , ĴY or ĴZ , and that these four operators each
commute with the rovibronic Hamiltonian Ĥrve given in equation (2.75).
However, the three angular momentum component operators do not com-
mute with each other, and we have the commutation relation

[ĴX , ĴY ] = i~ĴZ , (2.81)

with two others obtained by cyclically permuting X , Y and Z. Referring
Ĵ to molecule-fixed axes x, y and z, as we will do when we derive the rota-
tional Hamiltonian (see section 5.5), we obtain the commutation relation

[Ĵx, Ĵy] = −i~Ĵz, (2.82)

with two others being obtained by cyclic permutation of x, y and z. Note
the opposite signs in these two equations.

The simultaneous eigenfunctions of Ĥrve, Ĵ
2 and ĴZ are such that

Ĵ
2Φrve = J(J + 1)~2Φrve, (2.83)

and
ĴZΦrve = m~Φrve, (2.84)

where the total orbital angular momentum quantum number J = 0,
1, 2,. . ., and the projection quantum number m has one of the 2J+1
values 0, ±1, ±2, . . ., ±J . Stationary state eigenfunctions of Ĥrve

can be labeled using J and m, and for a given value of J the state
has a 2J+1 fold m-degeneracy.

If it is necessary to consider the magnetic interactions of the electron spin
we must use Ĥrve + Ĥes, which commutes with the square of the sum of
the total orbital angular momentum (now called N̂) and the total electron

spin angular momentum Ŝ; this sum is called Ĵ , i.e.

Ĵ
2 = (N̂ + Ŝ)2, (2.85)

and the good quantum numbers J andm now refer to the sum of the orbital
and electron spin angular momenta. To include the effect of the nuclear
hyperfine Hamiltonian we use Ĥint; see equation (2.77). This Hamiltonian

commutes with the square of the total angular momentum F̂
2, which is
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the square of the sum of N̂ , Ŝ and Î, where the latter is the total nuclear
spin angular momentum. Thus

F̂
2 = (Ĵ + Î)2 = (N̂ + Ŝ + Î)2. (2.86)

The eigenstates of Ĥint can be labeled using the total angular momentum
quantum number F , and the projection quantum number mF = 0, ±1,
±2, . . ., ±F . Angular momentum is discussed further in sections 5.5.2 and
14.5, and in problems 5.7 to 5.11.

2.8 The dipole moment operator and line strengths

To calculate the intensities of the lines in an absorption spectrum we need
the line strengths. Having accurate line strengths is important if one wants
to use a measured spectrum to determine the concentration of the species
being observed, or if one wants to know the predicted intensities in a the-
oretically simulated spectrum. To calculate line strengths we use the rovi-
bronic wavefunctions in integrals that are called transition moments.

For a gas phase sample illuminated by a weak electromagnetic radia-
tion field the line strength of an electric dipole transition between all
possible states Φ′′

rve having energy E′′
rve, and all possible states Φ′

rve

having energy E′
rve, is

S(f ← i) =
∑

Φ′

rve
,Φ′′

rve

∑

A=X,Y,Z

∣

∣

∣

∣

∫

Φ′∗
rveµAΦ

′′
rvedτ

∣

∣

∣

∣

2

, (2.87)

where dτ = dX2dY2dZ2. . .dXldYldZl is the volume element for inte-
gration over the internal coordinate space of the l particles.

In equation (2.87), µA is the component of the molecular electric dipole
moment along the A axis, and it is given by

µA =
∑

r

CreAr, (2.88)

where Cre and Ar are the charge and A coordinate of the rth particle
(nuclei or electron) in the molecule, with A = X , Y or Z.

The integral that is squared and summed over in equation (2.87) is a
component of the electric dipole transition moment; its square is a compo-
nent of the electric dipole transition probability. In the case of degeneracies,
that is if there is more than one eigenfunction Φ′′

rve (or Φ
′
rve) corresponding



Matrices and matrix algebra 37

to the eigenvalue E′
rve(or E

′′
rve), we obtain the line strength by adding the

individual transition probabilities for all transitions between the degenerate
states; this is why there is the sum over Φ′′

rve and Φ′
rve in equation (2.87).

Notice that translation is completely removed here. That is because the
translational energy of a molecule is unaffected by a weak radiation field;
a weak radiation field can only change the internal state of a molecule.

Electromagnetic radiation consists of oscillating electric and magnetic
fields, both of which contribute to its energy. Above we have discussed
the intensity of resonantly absorbed electric field energy, and we have ex-
pressed this in terms of the electric dipole transition moment integral in
equation (2.87). A molecule can also resonantly absorb magnetic field en-
ergy, and this can be expressed in terms of a magnetic dipole transition
moment integral. However, the line strength of a typical magnetic dipole
transition is about 10−5 of a typical electric dipole transition and so we usu-
ally ignore it, just as we usually ignore the extremely weak contribution to
the electric field absorption line strength from electric quadrupole absorp-
tion, but if the electric dipole intensity is low for some reason these weak
contributions to the line strength may have to be considered. In electron
spin resonance spectroscopy, and nuclear magnetic resonance spectroscopy,
the absorption process involves changing electron or nuclear spin states
for which the electric dipole transition moment is zero; they are magnetic
dipole transitions. Similarly, the electric field energy absorbed in the in-
frared region of the spectrum by low density molecular hydrogen gas results
from electric quadrupole absorption since there is no electric dipole absorp-
tion.

2.9 Matrices and matrix algebra

In this section we give a brief review of the most important definitions
required when using matrices. It can be looked over cursorily on a first
reading. A matrix is an array of numbers (called elements) arranged in
rows and columns; for example

G =

[

2 4
3 5

]

(2.89)

is a matrix. The matrix in equation (2.89) has two rows and two columns,
it is a square matrix, but matrices are not necessarily square. An n×n
square matrix (having n rows and n columns) is said to be n-dimensional.
In a general matrix, A say, the element occurring at the intersection of the
ith row and jth column is called Aij . Thus, from equation (2.89) we have
G11 = 2, G12 = 4, G21 = 3 and G22 = 5.

The transpose of a matrix A, say, is obtained by interchanging each
element Aij with the element Aji, and the matrix is written Ã. Thus from
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equation (2.89)

G̃ =

[

2 3
4 5

]

. (2.90)

If a matrix is equal to its transpose then the matrix is said to be symmetric.
The Hermitian conjugate (or conjugate transpose) A† of a matrix A is

obtained by taking the complex conjugate of the transpose of the matrix.
Thus

A† = (Ã)∗ (2.91)

and
(A†)ij = A∗

ji. (2.92)

A matrix that is equal to its Hermitian conjugate is Hermitian.
The sum of the diagonal elements of a square matrix is the trace of

the matrix; the Greek letter chi (χ) is used for it. From equations (2.89)
and (2.90) we have

χ(G) = χ(G̃) = 7. (2.93)

The determinant of an n × n square matrix A is written as

detA = |A| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 A13 · · · A1n

A21 A22 A23 · · · A2n

A31 A32 A33 · · · A3n

· · · · · · · · · · · · · · ·
An1 An2 An3 · · · Ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.94)

The value of the determinant is given by the sum

|A| =
∑

(−1)hA1r1A2r2A3r3 . . . Anrn , (2.95)

where the summation is over all n! possible permutations of the order of
the ri. The (n!)/2 terms in the sum involving an even permutation of the
order of the column labels ri from the standard numerical order 123 . . . n
have h even [and are hence multiplied by (−1)h = + 1 in the sum] and
the (n!)/2 terms involving an odd permutation have h odd [and are hence
multiplied by (−1)h = −1 in the sum]. An even (odd) permutation involves
the product of an even (odd) number of pair interchanges. We give two
examples to show how one uses this equation.

For the matrix G in equation (2.89) the determinant involves n! = 2!
= 2 terms: G11G22 having no permutation of the order of the ri so that h
= 0, i.e., h even, and G12G21 having a single permutation of 1 with 2 so
that h = 1, i.e., h odd. Thus, in the determinant sum G11G22 = 2×5 is
preceded by +1 (since h is even), and G12G21 = 4×3 is preceded by −1
(since h is odd). We can thus write

|G| =
∣

∣

∣

∣

2 4
3 5

∣

∣

∣

∣

= (2× 5)− (4 × 3) = −2. (2.96)
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As a further example, the determinant of the 3-dimensional matrix

D =





1 2 3
4 5 6
7 8 9



 (2.97)

involves n! = 3! = 6 terms:
D11D22D33 having h = 0 (the ri are in the standard order),
D11D23D32 having h = 1 (2 and 3 are exchanged),
D12D21D33 having h = 1 (1 and 2 are exchanged),
D13D22D31 having h = 1 (1 and 3 are exchanged),
D12D23D31 having h = 2 (1 and 2 are exchanged, and then 1 and 3),

and
D13D21D32 having h = 2 (1 and 3 are exchanged, and then 1 and 2).

Three have h even (and their product is preceeded by +1 in the determinant
sum), and three have h odd (and their product is preceeded by −1 in the
determinant sum). Using this result, but writing out the sum in a way
that shows how the determinant can be written by building it up from the
determinants of 2×2 sub-matrices within the 3×3 matrix, we have

|D| = 1(5× 9− 6× 8)− 2(4× 9− 6× 7) + 3(4× 8− 5× 7) = 0. (2.98)

We set up electronic wavefunctions as Slater determinants in equa-
tion (3.28), and in this application the most significant property that fol-
lows from the definition of a determinant, given in equation (2.95), is that
the determinant of a matrix will change sign if two rows are interchanged,
or if two columns are interchanged. From this it follows that the determi-
nant of a matrix will vanish if two rows are identical, or if two columns are
identical.

The product of an n×m matrix A (having n rows and m columns) and
an m×q matrix B in the order AB is an n×q matrix C where the ijth
element of C is given by

Cij =

m
∑

k=1

AikBkj . (2.99)

For example, if the matrices A and B are

A =

[

− 1
2

√
3
2

−
√
3
2 − 1

2

]

and B =

[

− 1
2 −

√
3
2√

3
2 − 1

2

]

, (2.100)

then equation (2.99) gives the (1,1) element of the product matrix C as:

C11 = A11 ×B11 + A12 ×B21

= (−1/2)× (−1/2) +
(
√

3/2
)

×
(
√

3/2
)

= 1. (2.101)
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The (1,2) element of the product matrix C is given by:

C12 = A11 ×B12 +A12 ×B22

= (−1/2)×
(

−
√

3/2
)

+
(
√

3/2
)

× (−1/2)
= 0. (2.102)

We can use equation (2.99) to similarly determine that C21 = 0 and that
C22 = 1. Thus, we can write out the product matrix C in full as

C =

[

− 1
2

√
3
2

−
√
3
2 − 1

2

] [

− 1
2 −

√
3
2√

3
2 − 1

2

]

=

[

1 0
0 1

]

. (2.103)

From equation (2.99) we see that for the multiplication between A
and B to be possible the matrices A and B must be conformable, i.e.,
the number of columns in A must be equal to the number of rows in B.
This means that, for example, A and B can both be m-dimensional square
matrices, and their product C will be an m-dimensional square matrix.
A can be a square matrix with dimension m, B can be a single column
matrix with length m, and their product will be a column matrix with
length m. A can be a single row matrix of length m, B can be a square
matrix of dimension m, and their product will be a single row matrix of
length m. A can be a single row matrix of length m, B can be a be a single
column matrix with length m, and their product will be a single number.
Other possibilities are obtained by choosing particular values for n and q in
equation (2.99). Matrix multiplication, like quantum mechanical operator
multiplication, is not necessarily commutative.

An n-dimensional square matrix E that has 1 in all diagonal positions
and zero in all off-diagonal positions is called an n-dimensional unit matrix.
The matrix C in equation (2.103) is a two-dimensional unit matrix. It
is customary to use the letter E for a unit matrix. If we multiply an n-
dimensional square matrix A by the n-dimensional unit matrix E the result
is A. That is the matrix E plays the role in matrix multiplication that unity
plays in the ordinary algebraic multiplication of numbers. Square matrices
having all off-diagonal elements equal to zero are said to be diagonal, and
the unit matrix is a special case of a diagonal matrix in which all diagonal
elements are unity.

If the product of two n-dimensional square matrices A and B is the
n-dimensional unit matrix E, i.e., if

AB = E, (2.104)

then we say that one matrix is the inverse (or reciprocal) of the other, and
we write

A−1 = B or B−1 = A. (2.105)



Problems 41

The matricesA andB in equation (2.100) are the inverse of each other; their
product is the two-dimensional unit matrix from equation (2.103). Only
square matrices can have a unique inverse, and efficient computer routines
exist for finding matrix inverses. However, the inverse of a matrix will not
exist if the determinant of the matrix is zero; a matrix having a determinant
that is zero is said to be singular. The matrix D in equation (2.97) is
singular from equation (2.98). If the inverse of a matrix is equal to the
transpose of the matrix then the matrix is orthogonal; the matrices A and
B in equation (2.100) are orthogonal. If the inverse of a matrix is equal to
the Hermitian conjugate of the matrix then the matrix is unitary.

2.10 Problems

2.1 Using equation (2.1), together with the fact that exp(2inπ) = 1
only if n is a positive or negative integer, determine the eigenvalues
En and eigenfunctions ψn(α) of the operator d/dα for the situa-
tion where α is an angle, which means that the eigenfunctions are
restricted to satisfy ψn(α+2π) = ψn(α). Determine also the eigen-
functions and eigenvalues of the operator −id/dα. Which of the
operators d/dα and −id/dα is Hermitian?

2.2 Are the eigenfunctions in problem (i) also eigenfunctions of the op-
erator d2/dα2?

2.3 A particle of mass M moving on a circular path of radius R has
angular coordinate α. The energy of the particle is P 2/2M and
its angular momentum is J = PR. By expressing the energy in
terms of the angular momentum, and then substituting the quan-
tum mechanical operator Ĵ = −i~d/dα, determine the Hamiltonian,
the Schrödinger equation and the quantized energies. The product
MR2 that scales the energy level spacings is called the moment of

inertia of an orbiting particle. Determine the energy level spacings
for orbiting atoms having various values of M and R.

2.4 Show how equations (2.38)-(2.40) are obtained from equations (2.34)
and (2.37).

2.5 Use equations (2.34)-(2.37) for the 2×2 perturbation problem to de-
termine S, c+ and c− for the situation with a constant off-diagonal
matrix element H12 of 10 cm−1 but with the zero order level separa-
tion ∆ being 0, 1, 10, 100 and 1000 cm−1, respectively. Compare the
results with the approximate values obtained using equations (2.38)-
(2.40).

2.6 Prove that the ij element of the n-dimensional square matrix D that
is the product of three n-dimensional square matrices A, B and C
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in the order ABC is given by

Dij =

n
∑

k=1

n
∑

l=1

AikBklClj . (2.106)

2.7∗ Prove that if any n-dimensional square matrixR say, is premultiplied
by the nonsingular n-dimensional square matrix Q, and postmulti-
plied by the inverse matrix Q−1, then the character of the resultant
matrix S = QRQ−1 is the same as that of the matrix R, i.e. prove

χ(S) = χ(QRQ−1) = χ(R) =

n
∑

i=1

Rii. (2.107)

2.8 Evaluate the determinants of the matrices A and B given in equa-
tion (2.100).



Chapter 3

Electronic states

From equation (2.75) for Ĥrve, we see that the rovibronic Schrödinger equa-
tion (2.76) does not involve molecular parameters, such as bond lengths and
angles, and that the only quantities occurring are the masses and charges
of the l particles (nuclei and electrons) that make up the molecule. Thus,
we can easily set up the Schrödinger equation for any molecule. One might
think that we could then simply use numerical methods to solve it. How-
ever, even using the most efficient numerical methods, current computers
do not have enough power for this to be possible with the required precision
except for three and four particle systems such as H+

2 and H2. This will
change as computer power increases.

For most molecules, to solve the rovibronic Schrödinger equation ac-
curately, we are forced to make approximations and then to correct
for them as best we can. The approximations introduce concepts that
allow us to understand molecules.

Such concepts as electronic state, molecular orbital, electronic configura-
tion, potential energy surface, equilibrium structure, force constant, elec-
tronic and vibrational angular momentum, and Coriolis coupling constant
come about because of approximations that are introduced. However, these
concepts are only satisfactory and useful if the approximations that lead
to their introduction are reasonably valid.

3.1 The Born-Oppenheimer approximation

To solve the rovibronic Schrödinger equation we change coordinates so that
it separates into simpler Schrödinger equations. Approximations have to
be made, but by choosing appropriate coordinates the approximations are

43
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minimized. The first separation we make is that of the electronic motion
from the nuclear motion. To do this we change coordinates in Ĥrve, as
given in equation (2.75), from (X2,Y2,Z2,. . .,Zl) to (ξ2,η2,ζ2,. . .,ζl), where
the ξηζ axis system is parallel to the XY Z axis system but has origin at the
nuclear centre of mass rather than the molecular centre of mass. This choice
of origin allows us to refer the motion of the electrons to the positions of the
nuclei, and it gives a kinetic energy expression that is completely separable
into an electronic kinetic energy T̂e and a nuclear kinetic energy T̂N. In
these new coordinates the rovibronic Hamiltonian can be written:

Ĥrve = T̂e + T̂N + Vee + VNN + VNe, (3.1)

and the rovibronic Schrödinger equation is

[

T̂e + T̂N + Vee + VNN + VNe

]

Φrve = ErveΦrve, (3.2)

where the electrostatic potential energy given in equation (2.75) has been
written as (Vee + VNN + VNe). Vee is the sum of all the electron-electron
electrostatic repulsions, and it only involves the coordinates of the elec-
trons. VNN is the sum of all the nuclear-nuclear electrostatic repulsions,
and it only involves the coordinates of the nuclei. VNe is the sum of all the
electron-nuclear electrostatic attractions, and it involves the coordinates of
the nuclei and electrons.

Although the kinetic energy is completely separable into electronic and
nuclear parts in these coordinates, the potential energy is not because of
the presence of the electron-nuclear attraction term VNe. This part of V
is the glue that holds the molecule together and we cannot just neglect
it. We cannot chose coordinates in such a way that the potential function
separates into two non-interacting parts where one part just involves the
nuclear coordinates and the other the electron coordinates, and we cannot
follow the simple separation of variables procedure that we used to separate
translational and the internal degrees of freedom in section 2.5.

All is not lost, however. We saw at the end of section 2.5.1 that

because electrons are so much lighter than nuclei, the first excited
electronic state is at a much higher energy than the first excited
vibrational state. Knowledge of this leads us to treat the rovi-
bronic Schrödinger equation in a special way, by using the Born-
Oppenheimer approximation, to separate it into nuclear and elec-
tronic parts.

To understand this approximation it is helpful to view a molecule as having
a nuclear framework that rotates and vibrates, while at the same time the
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electron cloud is continually modifying its shape so as to conform to the
instantaneous nuclear geometry. It would be more appropriate to think of
the electronic wavefunction as varying with the nuclear coordinates, and
from it one can calculate the electronic probability distribution. Using this
idea, the electronic wavefunction is obtained in the Born-Oppenheimer ap-
proximation by solving the rovibronic Schrödinger equation with the nuclei
fixed at an appropriate geometry, and with only the electronic coordinates
as variables. This means that in equation (3.2), we put TN = 0 (the nuclear
kinetic energy is zero because the nuclei are held fixed), and neglect VNN

(since we are only concerned with the electron dynamics) to give:

[

T̂e + Vee + VNe

]

Φelec,n = ĤelecΦelec,n = Velec,nΦelec,n, (3.3)

where a particular nuclear geometry is chosen in VNe, and n labels the
successive electronic states (n = 1, 2, . . .). This equation is the electronic
Schrödinger equation, and it is solved at many different nuclear geometries
to yield the electronic wavefunctions Φelec,n (which are functions of the
electronic coordinates), and energies Velec,n; Φelec,n and Velec,n are each a
parametric function of nuclear geometry.

The calculation of the electronic wavefunction as described above has
been achieved by holding the nuclei fixed. To calculate the energies for
the nuclear motion we must allow them to move under the constraint of
the electrostatic nuclear-nuclear repulsion potential energy term VNN in
equation (3.1), but we must also include the constraint imposed by the
fact that the electronic energy Velec depends on the nuclear geometry. The
need to include this extra constraint is easy to appreciate. Suppose the
nuclei move from one geometry to another in which VNN is higher and that
simultaneously Velec is also higher; in this case the nuclei have to work
against the combined energy of (VNN + Velec), and this function (which
depends on the nuclear geometry) provides the potential energy surface for
the nuclear motion. For each electronic state n there will be a different
potential energy surface (VNN + Velec,n), and a different nuclear motion
(rotation-vibration) Schrödinger equation given by

[

T̂N + VNN + Velec,n
]

Φrv,nj = E0
rve,njΦrv,nj , (3.4)

where j (= 1, 2, . . .) labels the rotation-vibration states in the same way
that n labels the electronic states from equation (3.3).

In equation (3.4) E0
rve,nj is the rovibronic energy for the j’th rotation-

vibration level in the n’th electronic state, within the Born-Oppenheimer
approximation. We rewrite the equation so that the zero of energy in each
electronic state is the minimum value of (VNN + Velec,n), which we call
the electronic energy Eelec,n of the electronic state n,1 and we obtain the

1 The electronic term value in cm−1 is called Te(n).
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rotation-vibration Schrödinger equation as

[

T̂N + VN,n

]

Φrv,nj = ĤrvΦrv,nj = Erv,njΦrv,nj, (3.5)

where
VN,n = VNN + Velec,n − Eelec,n (3.6)

and
Erv,nj = E0

rve,nj − Eelec,n. (3.7)

To solve the electronic and rotation-vibration Schrödinger equations, we
refer the electrons and nuclei to molecule-fixed xyz axes in order to separate
rotation. These axes have origin at the nuclear centre of mass, like the ξηζ
axes, but they are attached to the molecule so that they rotate with it (see
section 4.1).

In making a summary of the above it is helpful to represent the nuclear
coordinates as RN and the electronic coordinates as relec. In the Born-
Oppenheimer approximation the rovibronic eigenfunctions are the products

Φ0
rve,nj(RN, relec) = Φelec,n(RN, relec)Φrv,nj(RN), (3.8)

and the rovibronic eigenvalues are the sum

E0
rve,nj = Eelec,n + Erv,nj . (3.9)

We have reduced the problem of solving the (3l−3)-dimensional rovibronic
Schrödinger equation (3.2), to one of solving two differential equations:
Equation (3.3), which is the 3(l − N)-dimensional electronic Schrödinger
equation for Φelec,n(RN, relec) and Velec,n(RN) (and Eelec,n), and equa-
tion (3.5), which is the (3N−3)-dimensional rotation-vibration Schrödinger
equation for Φrv,nj(RN) and Erv,nj . Fortunately, it is usually the case that
only the very lowest eigenstates of equation (3.3) are of interest, and ef-
ficient variational methods have been developed to obtain them even for
molecules having many electrons (see section 3.3).

The Born-Oppenheimer approximation introduces the concepts of elec-
tronic state and electronic potential energy surface VN,n(RN). Potential
energy surfaces are independent of isotopic substitution because the nu-
clear masses do not enter2 equation (3.3). The nuclear geometry at the
minimum of the potential energy surface of an electronic state is the equi-

librium geometry of that state; it is the geometry at which the nuclei would
naturally come to rest if they moved classically on the surface, and it is the
geometry at which VN,n(RN) = 0. The structure of a molecule is its struc-
ture at the equilibrium configuration of its ground electronic state within
the Born-Oppenheimer approximation.

2 Within the Born-Oppenheimer approximation, a small nuclear-mass dependent elec-
tron kinetic energy term T̂ ′

e is neglected.
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The exact rovibronic wavefunctions Φrve are (by definition) eigenfunc-
tions of the rovibronic Hamiltonian Ĥrve given in equation (3.2), but the
functions Φ0

rve are not since it can be shown that

ĤrveΦ
0
rve,nj = E0

rve,nΦ
0
rve,nj +H ′, (3.10)

where H ′ = 0 only if

T̂NΦelec,n(RN, relec)Φrv,nj(RN) = Φelec,n(RN, relec)T̂NΦrv,nj(RN), (3.11)

that is, only if T̂N and Φelec,n commute. Put another way, H ′ = 0 only if

the effect of T̂N acting on all the Φelec,n is neglected. However, this is not
the whole story, and the energy separation between electronic states also
enters.

The separation in energy between the zero order Born-Oppenheimer
states Φelec,nΦrv,nj and Φelec,mΦrv,mk is

∆(nj;mk) = (Eelec,m + Erv,mk)− (Eelec,n + Erv,nj). (3.12)

The off-diagonal matrix element of the rovibronic Hamiltonian between
these states is

H(nj;mk) =

∫

Φ∗
elec,nΦ

∗
rv,njT̂NΦelec,mΦrv,mkdτ, (3.13)

since the electronic off-diagonal matrix elements of (Te+Vee+VNe) and of
VNN vanish at all nuclear geometries. From equations (2.31)-(2.40) we
see that the extent to which these two levels perturb each other depends
on the ratio H(nj;mk)/∆(nj;mk). If this ratio is small there will be
little mixing of the states, i.e. little breakdown of the Born-Oppenheimer
approximation.

For almost all molecules the excited electronic states are at energies
well above the ground electronic state. Thus the Born-Oppenheimer
approximation is almost invariably a good approximation for the lev-
els of the ground electronic state. A significant breakdown of the
Born-Oppenheimer approximation often occurs in excited electronic
states if there are other excited electronic states nearby in energy.


