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1. What is a black body - and what does it tell us 
 about radiation? 
• the heat carried by light first studied by William Herschel (an
 English astronomer of German descent, discoverer of Uranus and 
 numerous nebulae) started wondering, in 1800, about the 
 temperature of the glowing stars such as the Sun; with a blackened 
 Hg-thermometer and a prism, he found that the temperature of 
 Sun’s radiation increases from to blue to the red; moreover, that in 
 the invisible range beyond the red  there’s radiation (infrared) that 
 carries even more heat than the red (i.e., the intensity of sun’s 
 radiation was found to increase with increasing wavelength) 

• Johann Seebeck (a German private scholar) discovered, in 1822, 
 the thermoelectric effect: a junction of two different metals 
 produces a voltage that depends on the junction’s temperature; 
 such a junction (a ‘thermocouple’) can be used as a sensitive 
 thermometer 

• John Tyndall (at the Royal Institution, German educated) 
measured, in 1863, the temperature due to different spectral  
regions  of a glow (e.g., from an electric arc or from an 
incandescent  filament) with a thermocouple thermometer; found 
that the  maximum temperature (in the range between 500 and 
1500 K)  arises for the infrared portion of the spectrum (i.e., at 
wavelengths  greater than roughly 800 nm) 



• Gustav Kirchhoff (1824-1877, active in Heidelberg and Berlin) 
 concluded, in 1860 that “[h]eat rays are, by their nature, the same 
 as light rays ... Invisible heat rays differ from light rays only in 

 their ... wavelength.” 
• coined the notion of a black body for a body at thermal equilibrium 
 which receives exactly as much radiative energy as it emits 
 (otherwise the temperature of the black body would change); such 
 a body is in a thermal equilibrium with radiation  
• a black body is best realized inside a cavity whose walls absorb 
 exactly as much radiant energy as they emit and have the same 
 temperature as the black body;  
• actually, just the insides of a cavity well approximate a black body 
• as for a black body’s geometry, think of a furnace or 
 Wedgewood’s kiln which made glow red everything in the same 
 way as the kiln’s walls, independent of size, shape or material 
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2. Kirchhoff’s, Wien’s, Stefan’s, and Paschen’s 
 laws 
• Kirchhoff’s law: at any wavelength λ and temperature T, the 
 energy, ε e(λ ,T ), emitted by a cavity wall per unit area and unit 
 time is equal to the energy, εa (λ ,T ) , absorbed by it 
• this is a statement of the energy conservation law for a system 
 consisting of radiation and matter at thermal equilibrium; the 
 wavelength dependence is empirical 
• note that we can write 

 εa (λ ,T ) = α (λ ,T )I (λ ,T ) 

 where α(λ ,T ) is the absorbed fraction of the radiant energy – a 
 property of a given material  

• the spectral intensity 

 I(λ ,T ) = εe (λ ,T )
α(λ ,T )

   [W/m2/m = W/m3] 

 is then a universal function independent of any other properties of 
 the body (such as composition, shape, etc.) other than the 
 wavelength and temperature; it’s called the black body spectral 
 distribution function 

• for a black body, α(λ ,T ) = 1 by definition, and so 

 I(λ ,T ) = εe (λ ,T ) 

 i.e., the spectral distribution function of a black body can be 
 determined by measuring its emission, ε e(λ ,T ) 



 
• the emission of any glowing body of any geometry resembles that 
 of a black body as long as it’s in a thermal equilibrium at T 

• Samuel Langley (at the Smithsonian Institution) developed, by 
 1880, the bolometer (a device based on the steep dependence of 
 resistance of metals on temperature) and obtained a first 
 quantitative measurement of the shift with increasing temperature 
 of the black-body radiation intensity towards the blue  
• Hermann von Helmholtz (1821-1894) and his circle (including O. 
 Lummer, E. Pringsheim, W. Wien, H. Rubens, F. Paschen, and 
 others) at the Physikalisch-Technische Reichsanstalt (PTR) in 
 Berlin (and elsewhere) developed (a) high-intensity sources of 
 radiation that well approximated a black body and whose 
 temperature could be accurately controlled; (b) techniques to 
 accurately measure temperatures above 1000 K; (c) techniques to 
 spectrally analyze the radiation from the UV to IR; (d) techniques 
 to precisely measure the light intensity 
• as a result, by the late 1890s, the black body spectral distribution 
 function became accurately known 
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• Josef Stefan (in Vienna) noticed, in one of Tyndall’s papers, that 
 the reported total intensity emitted by a Pt-filament at 800 K 
 was 11.5 times less than at 1470 K - and realized that 
 11.5 ≈ (1470 / 800)4  - and concluded that the total radiated 
 intensity is proportional to T 4 (Stefan’s law); based on this law, 
 Stefan estimated the temperature of the Sun’s surface at 6100 K  

• Willy Wien (in 1893) noticed that the black-body spectral 
 distribution curves exhibit a pattern: the positions of the 
 maxima, λmax (T ), of the I(λ ,T ) curves shift with T according to  

 λmax (T )T = const.  &  I(λmax ,T )∝ T5  

 which is known as Wien’s law 

• Friedrich Paschen (also in 1893) took up V. Michelson’s idea of 
 treating light using Boltzmann’s statistical mechanics and 
 “derived,” essentially by fitting the data, a formula 

 I(λ ,T ) ∝λa exp −
b
λT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

• this could have been the last word in black body radiation theory 
 (with the discrepancies between experiment and the formula 
 swept under the carpet) - but it wasn’t, because the careful 
 experimentalists at the PTR have found that the formula fails at 
 large wavelengths (where it predicts more spectral intensity than 
 observed); also the physical meaning of a and b was unclear 



3.  Electromagnetic cavity modes, the law of 
 Rayleigh and Jeans, and the ultraviolet 
 catastrophe 
• a rigorous attempt to derive the black-body distribution function 
 (from what we call today, classical physics) was made by Lord 
 Rayleigh and by James Jeans (between 1899 and 1900) 

• two similar counter-propagating waves interfere (add up) and give 
 rise to a standing wave; let 

 Ey+ = E0 y sin[k (x − ct)]  & Ey− = E0 y sin[k (x + ct)] 

 be such counterpropagating waves (along the + and − x-axis); then 
 their superposition (which is automatically a solution of the wave 
 equation) is 

 Ey = Ey+ + Ey− = 2E0 y sin
2πx
λ
cos 2πct

λ
= 2E0 y sin

2πx
λ
cosωt  

 i.e., the electric field vanishes everywhere for  

 2ct
λ

= ±(N +1 2)   N is an integer 

 and is always zero for  

 2x
λ
= ±N    

• the electric field Ey is said to have nodes at 

 x = ±N λ
2

 



• a 1-D cavity (along the x-axis) obtains when walls are installed at 
 the nodes of the wave  
• or vice versa, two walls will select waves whose nodes are integer 

multiples of λ 2  and a thermal equilibrium between the waves and 
the walls will be established; this is because the electric field must 
be zero at the walls - or else currents would be induced and energy 
dissipated, which would tip the thermal equilibrium 

• the electromagnetic field in a cubic cavity of side L (L >> λ or the 
 molecular dimension) consists of standing waves in 3-D which 
 fulfill the conditions (here j stands for x, y, or z) 

  

λ/2 = L/Nj

L = Njλ/2

V = 8L3

 

• hence 

 N j =
2L
λ j

=
2Lk j
2π

=
2Lω j

2πc
=
Lω j

πc
 

 is the number of modes along the j-axis 



• each set of integers (Nx, Ny, Nz) defines a cavity mode 

• the number of modes with frequencies between ωj and ωj +dωj is 

 dN j =
Ldω j

πc
 

 and so 

 d3N = dNxdNydNz =
L
πc

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
dω xdω ydω z  

 is the number of modes with frequencies between ωx and ωx +dωx, 
 ωy and ωy +dωy, and ωz and ωz +dωz 

• on transforming to spherical coordinates  

 

•

ω

dΩ

dω

dϕ

ωsinθ
θ

dV= (ωdω)(ωsinθdθ)(dϕ) 
= ω2dωsinθdθdϕ = ω2dωdΩ

 

 d3N→ dN =
L
πc
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
ω 2dωdΩ 

 where dΩ is a solid angle element 



 

• integrating over the solid angle (i.e., over the whole cavity) under 
 the assumption of a spherical symmetry yields  

 dΩ =∫ sin θdθ
0

π
∫ dϕ

0

2π
∫ = 4π  

 and so the number of cavity modes with frequencies between ω 
 and ω + dω becomes 

 dN =
4L3

π 2c3
ω 2dω  

• as a result, the number of cavity modes per dω over the cavity 
 volume V = 8L3 is  

 dN
Vdω

=
ω 2

2π 2c3
  spectral mode density (per polarization) 

• spectral energy density, U, obtains by applying the equipartition 
 theorem to the spectral mode density: each polarization carries kT  
 of energy and there are two polarizations per spectral mode; hence 

 U (ω ,T ) = 2 dN
Vdω

kT = ω
2kT

π 2c3
 

• since 

 |U (ω ,T )dω |=|U (ν ,T )dν | & |U (ν ,T )dν |=|U (λ ,T )dλ | 

 where  

 dω = 2πdν   & |dν |= |(c λ2 )dλ | 

 have 



 U (ν ,T ) = 8πν
2kT
c3

 & U (λ ,T ) = 8πkT
λ4

 

• note that 

 U (ω ,T )dω  & U (ν ,T )dν  &  U (λ ,T )dλ in J
m3
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
 

• spectral intensity obtained as 

 I(λ ,T ) = cU (λ ,T )
4

=
2πckT
λ4

≡ IR− J (λ ,T )  [J/s/m3 = W/m2/m] 

 which is the Rayleigh-Jeans law 

• let’s compare IR− J (λ ,T ) with experiment: 
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• this discrepancy is known as the ultraviolet catastrophe 



4.  Planck’s act of desperation and the birth of the 
quantum 

 “Those [scientists] who dislike entertaining contradictory thoughts 
 are unlikely to enrich their science with new ideas.” 

• Max Planck (1858-1947) excelled in music, languages and math; 
studied in Berlin under Kirchhoff and Helmholtz; became 
successor to Kirchhoff after the first two choices, Hertz and 
Boltzmann, declined 

• in his attempt to explain the black-body spectral distribution 
 function, Planck relinquished the idea that energy is a continuous 
 variable 

• classically, if a system can have energies E1 and E2 then it can 
also  have all energies E such that E1 < E < E2 (for E1 < E2 ) 

• according to Planck, only discreet values of energy are possible; if 
 these are, say, E1 and E2 then 

 E2 − E1 = hν  

 where hν  is Planck’s quantum of energy, ν  is a characteristic 
 oscillation frequency of the system (say of the atoms that make up 
 the black body), and h is an elementary quantum of action 
 (Planck’s constant), h = 6.6262 ×10−34  Js 



• Planck was leaning on the statistical thermodynamics of 
 Boltzmann (which, while under Mach’s spell, Planck disapproved 
 of, then adopted); the introduction of the quantum of energy made 
 it possible to actually count “how many energies” there are in a 
 given energy interval (there are always infinitely many for a 
 continuously changing variable) 

“In a word, I could call the whole procedure an act of despairation. 
For I am, by nature, peaceable and not inclined to dubious 
adventures. But I had been struggling with the problem of 
equilibrium between radiation and matter for six years, without 
success. I knew that this problem was of fundamental importance 
to Physics, I knew the [black-body spectral distribution] formula; 
hence a theoretical interpretation had to be found at any price, no 
matter how high that might be.” 

• there was no justification for the procedure other than that it 
 enabled Planck to get an exact fit of the black-body radiation data 

 “I tried immediately to weld the elementary quantum of action 
 somehow in the framework of classical theory. But in the face  
 of all such attempts this constant showed itself to be obdurate ... 
 My futile attempts to put the elementary quantum of action into the 
 classical theory continued for a number of years and they cost me a 
 great deal of effort.” 

• in his Nobel lecture (1920): “When I look back at the time, already 
 twenty years hence, when the idea and importance of the physical 
 quantum of action first began to emerge ... it appears to me as one 
 more illustration of Goethe’s wise words: man errs as long as he 
 strives.” 



 

• let’s consider Einstein’s derivation of the black-body radiation law 
 (from a 1917 paper) 

• assume a two-level molecular system 
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• this implements Planck’s desperate assumption of a discrete energy 

   

€ 

E2 − E1 = hν = !ω  

• transition rates in a two-level system exposed to radiation of 
aspectral energy density U: spontaneous emission, induced 
emission, and induced absorption 

• spontaneous emission 

 Wspont
21 = A21 =

1
τ
≡ A  

 where A21 (or A) is Einstein's coefficient of spontaneous emission, 
 τ  is the lifetime of state |2> 

• induced emission 

 Wind
21 = B21U    



 where B21 is Einstein's coefficient of induced emission  

• induced absorption 

 Wind
12 =Wabsorp = B12U    

 where B12  is Einstein's coefficient of (induced) absorption; there's 
 no spontaneous absorption 

• if levels |1> and |2> are nondegenerate  

 B12 = B21 

 and so 

 Wind
12 =Wind

21  

• note that Einstein’s coefficients are independent of temperature  

• at equilibrium, the system, molecules + radiative field, is in a 
 stationary state, i.e., the rates for absorption and emission are the 
 same: 

 N1Wind
12 = N2 (Wind

21 +Wspont
21 ) 

 where N1 and N2 are the populations, i.e., numbers or number 
 densities of molecules, in states |1> and |2> at equilibrium 

• in terms of Einstein's coefficients 

 N1B12Ueq = N2 (B21Ueq + A21 ) 

 where Ueq  is the equilibrium spectral energy density 

• since, according to Boltzmann statistics, 



 N ∝ exp −
E
kT

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
 

 we have 

 
  

€ 

N1
N2

= exp E2 − E1
kT

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= exp !ω
kT
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

=
B21U

eq + A21
B12U

eq  

• the last equation can be solved for Ueq  with the result 

 

  

€ 

Ueq =

A21
B21

B12
B21

exp !ω
kT
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−1

=
A
B

1

exp !ω
kT
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−1

≡Ueq(ω,T ) 

• since  

 
  

€ 

A
B

=
!ω3

π 2c3
   (trust me ...) 

 

  

€ 

Ueq(ω,T ) =
!ω3

π 2c3
1

exp !ω
kT
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−1

 

 or 

 Ueq (λ ,T ) =
8πhc
λ5

1

exp hc
λkT
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−1

 

 and so 

 

  

€ 

I(ω,T ) =
cUeq(ω,T )

4
=
!ω3

4π 2c2
1

exp !ω
kT
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−1

 



 or 

 I(λ ,T ) =
cUeq (λ ,T )

4
=
2πhc2

λ5
1

exp hc
λkT
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−1

 

• the equilibrium number of the light quanta per mode is 
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1

exp !ω
kT
⎡ 
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−1
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• in the visible range (VIS) at T < 104 K, very few photons per mode 
 (e.g., at T = 10000 K, there are just 0.02 light quanta per mode in 
 the blue) 
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• note that the total intensity, I(T ), of the black body radiation at a 
 temperature T obtained by integration of the spectral intensity 
 distribution function: 

 I(T ) =
2πhc2

λ5
1

exp hc
λkT
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−10

∞

∫ =
2k4π 5

15c2h3
T 4   [W/m2] 

 which is Stefan’s law, with 

 2k4π 5

15c2h3
= 5.65 ×10−8 Wm-2K-4 


