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The Born—-Oppenheimer (BO) approximation is used in the solution of the rovibronic wave
equation, and every chapter of this book implicitly or explicitly involves it; either the BO approx-
imation is assumed or else its breakdown is specifically considered. Thus it is appropriate that
the opening chapter explain brielly what this approximation is. Although not always appreciated
there are two ways of making the BO approximation: the perturbation theory approach [Born and
Oppenheimer (1927); see also Sections 14 and 15, and Appendix VII, of Born and Huang (19545,
and Mead (1988)]. and the variation theory approach [Born (1951} see also Appendix VII of
Born and Huang (1954)]. Before outlining these two approaches we first write out the nonrela-
tivistic rovibronic Humiltonian in order to introduce the notation used [see, for example, Bunker
and Jensen (1998} for the details of the derivation].

We consider u malecule us consisting of / particles, N of which are nuclei and { — N of which
are electrons. The derivation of the rovibronic Hamiltonian involves first separating off translation.
and then (in order to facilitate the separation of nuclear and electronic motion) referring the
coordinates ol all particles in the molecule to a (&, 1, &) axis system that has origin at the auclear
center of mass, but with arbitrary space-fixed orientation, Doing this the exact nonrclativistic
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tspin-free) rovibronic Hamiltonian is obtained us [see. for example, equations (9-48) of Bunker
and Jensen (1998)]:
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[ these equations the mass of each nucleus is at;, the total mass of 21l the nuclei is My, the mass
of the electron is ni,, the charge of each particle is Cre (C, = —1 for the electron), and K., is the
separation of particles » and s. We explicitly show that the potential energy function V depends
on the nuclear cocrdinates Ry = (£, i3, &, Exonn Lo Ev ny, ) and on the electionic coor-
dinates Foeo = (Ey 12 D). Ena - Exvare My Swvane o Enoyn &L In these (& n. &Y coordinales
(with the origin at the nuclear center of mass) the kinetic energy is completely separable into an
electronic part T, = 'flf’ -+ f"L and a nuclear part T, We now consider the two ways of making

the BG approximation in order to solve the rovibronic wave equation

lLH;'\'c - El‘\c.”i} lI‘rr\-mn("“;Icu- R\') =0, (8)

1.1 The perturbation theory approach

Born and Oppenheimer (1927) tcafled BandO lrom here on) begin in their incroduction with the
fundamental iden that the rovibronic Hamiltonian should he expanded in powers of the parameter
e, where i is given by the fourth root of the ratio of the mass of the clectron o the mean nuclear

mass My, i.e..
174 i -
o om, : [N
o= — — — . (9)
Mu/N My

Born and Heisenberg (1924) had earlier suggested an expansion in \/m /My, Using their expun-
sion parameter BandO show (as we see below) (hat, with the electronic energy appearing in
zeroth order. the vibrational encray appears in second order, and the rotational energy in fourth
order, while the first- and third-order terms disappear.
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The second idea in BandO is that the vibrational displacement coordinates are x times the size
of the bond lengths or bond angles. This is expressed by writing

Ry iRl(\)J—FKUN, (10)
from which it follows that _
- b 1 4
T = T (n
ORN K dly

In equation (10) RY, is an as yet unspecified molecular reference configuration. and the rotational
coordinates are contained in the Ry coordinates. BandQ show that this reference configuration
has (o be the equilibrium molecular configuration, and we will see why this is when we repeat
their analysis of the first order result below.

The third important part of the development made by BandO. which follows after introducing
the vibrational displacement coordinates Uy in equation (10), is that the following order of
magnitude reiation holds:

Wee Ve
ai'ﬂcc dUN ’

(12}

This equation is necessary in order to relate the crders of magnitude of Ty and 7Y,
The treatment in BandO depends on the following two conditions:

o That the vibrational energy separations be two orders of magnitude smaller than the electronic
energy separations, i.e.,

AFE i, ~ it AE e, (133

and

e That the rotational energy separations be two orders of magnitude smaller than the vibrational
energy separations, ie.,
,
AEw ~ k" AE . (14)

When these conditions are in accord with the expeumenml observations the BO 1pp1m1mat10n
as treated in BandO will be valid.

To begin the perturbation theory treatment the rovibronic Hamiitonian is written as
A= Hy+ T+ T (15)
where the electronic Hamiltonian is defined as
Hy=T" 4+ V (R Fotee) - (16)

The electronic wave equation

[*ﬁl’“ - E\.‘l\.‘c.n} (bdcc.n (Feters RI\) =0, (17

is supposed solved, with the rye. us dynamical variables and 5 as the electronic state quantum
number. for Ry = R{ and for neighbouring molecular configurations around R} To the approach
of BandO the #th seluticn of the electronic wave equation is obtained hy a pelturbation theory
expansion about the solulion at Ry = RY using equation (10) to give:

Hy = By eV R (18)
cDL‘lL‘L‘JF - (DE{‘JLJL n + "C(b(cl‘c]t‘.ﬁi + Kg(bt(:i‘]r.ﬂ -I" e “9)
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and
)
EL‘]L’V-” = EC]CL‘.H + KE\.!LL " +#” ELILL n o (20)
11 1 1 . E - . . . ~
where A, Py and Eg . are independent of Uy (being appropriate for Ry = R%). Hy”

is an operator with respect to the coordinates rae. and. along with &y, and EJ, L it is a
homogenecus function of degree r in the Uy, In the notation of BandQ equations (18)—(20)
above are given in their equations (160)-(18), where they use the nolation &, ¢ and V,, for what
we call Ry, Uy and E.e,. Substituting equations (18)-(20) into equation {17) and equating like
powers of i we obtain:

LI c()) |()a .

{[_‘{( t.]LL u} clecon — 0. (21 )
[T e(l» (]) _ 11 (l} th
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[[[ w ELILL H} elee,n — {Hl) - Edm n} q)cluc.u - [H Edu n (Dclcc_n' (23)

etc., where equation (21) is obtained from the «° Loefhmenls equation (22) is abtained frony the
wt coelficients, and equation (23} is obtained from the x* ceelficients.

To make an order of magnitude expamlon of the complete Hamiltonian Hm we have (o
deterntine the orders of magnitude of Té and Ty given in equations (3) and (4) respectively.

Comparing the mass coefficient of 7, with that of 7% it is obvious that 7 is of order of magnitude
it Hy. and so we can express its order of magnitude by writing

Tt : (24)

To determine the order of magnitucle of Ty we have to consider both the size of its mass coefficient
and the size of the derivative Hz‘lfl\L/"R\:' Using equation {11) for the vibrational part.of T
icalled Tw(vib)|, which is expressed solely in terms of derivatives of degree two with respect to
the displacement coordinates, it follows that

. g | . i
(J]b :T I —~ —_JT‘ e B (25)
Ny ”(aRJ = “(UUN-)

Using equation (12), together with a consideration of the sizes of the mass coefficients. there is
the order of magnitude relation:

Substituting equation {26) into equation (23) we obtain the required order of magnitude estimate.

) ~ K [:1(). 126)

Taivih) ~ «*Hy. (27;

The order of magnitude of the rotational part of Ty (which contains no derivatives with respect
to the displacement cootdinales) is «*Hy. and the order of magnitude of the rotdtional - vibration
coupling part of Ty twhich contains derivatives of degree one with respect to the displacement
coordinates) is k‘j‘if]u. To express these orders of magnitude we write

TN - .lc‘j[“‘fl\ + f(‘}[jfg,‘\. -+ k'_] [:Jr;g[

— it Hlm 1k (H”” 1 Hm) o (Hzl:” +[’:’(1I1"\' 4 I.;”[:(\ZJ) . (%)
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This is given in equation (29) of BandO, and the above order of magnitude breakdown of the
factors Pﬂh_v. Haer and Ha, is copied from them. Note that ﬁ;?’ invelves quadratic derivatives
with respect to the vibrational displacement coordinates. Thus to fourth order the rovibronic
Hamiltonian written as an order of magnitude expansion is

1

Hipe = H +Kﬁ[5|) + it (HJ LS Hm’) il (H[h +H1c:)\) (IJ)

+ it (H,‘“" + A LB+ Y +Ff3‘§’), (29)

To implement perturbation theory for solving the rovibronic wave equation [equation (8)] we
expand the eigenfunctions and eigenvalues of H .. as

Lpl‘\"-‘-’” \-IJ:?: " + KLIJ:\!: I Tk qu:é ni o (30)

and
{0 th (2
EF\'C-H! - Em " + KEI\-L mn + K- Enu n +.... (3] )

As in the perturbation theory treatment of the electronic wave equation in equations (21—
above, we now substitute equations (29)—(31) into equation (8), and equate like powers of «. If
we stop at second order we obtain:

A - BS, wi, =0 (32)
|7 = B0 il = = A — B, (33)

and
A B = = [ B e, [ A - e e, G

In zero order, comparing equations (21) and (32), we deduce that

E{m -—bt(.[lj(.]L ne (35)

rve

) . . . - . .
and that tT)é(,E’C‘” = Dergep (Faees RY) Is @ solution of the zero-order rovibronic equation (32). The

product of this clectronic function with an arbitrary function of Uy, $.(Uy) say, will also be
a sclution, and thus, in general:

7LIJL('E-‘]L:J.J'H (Fetee. Un) = I\LLL(UI\ (bdu MOSIES (D(n?li(UV elecn ("E]CU;Rg} ' (36)

The arbitrariness in the function & (Ty) disappears when we take the treatment (o second order,

nue
Multiplying the left hand side of equation (33) on the left by fbf:]L’L » @nd Integrating over Fep,
givcs zero from equations (21} and (35). Thus multiplying the right hand side on the left by

@ and integrating over Fase SIVES Zero, so we have
ElLL n = & =

<CIJ((_(IJL’L " l (H( - E‘i\li m) |\'pl(?u}m> (I)l('lll)lg U]\) <(DLM i (’U”) EJ[\IL) m) I(I)(L(!)L:L n> 0, (37)

0 :
where we inlegrate only over rep... However, if we multiply equation (22) by &} | and integrate
OVET Felee WE Cbtain

(o (0 ) 10y
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(ﬁ(gl’ _ E(,],'. ‘CD((!J > 0, (28)




! COMPUTATIONAL MOLECULAR SPECTROSCOPY

from which we deduce, by compuaring with equation (37), that we must ha

=il

‘rtl) k[‘ulLLn' (39)

e m

However £ like Epey. 15 a constant independent of Uy, whereas o

e s

of Uy this implies that we must have

is a linear function

LI&L "

EUN e (40}

eleen

and the linear term in equation (20) vanishes, This means that 8E e, /0Ux = 0, and thus the

reference molecular configuration RY has to be the equilibrium molecular configuration for
. . i

each electronic state 17, Setting £, , and EU!

[HAI (AU

equal to zero in equations (22) and (33), and
comparing the two equations, we see that 'V (U )@ (ruee: Ry ) is a solution of the inhomoge-

e clew. i
neous equation (33, 1t is stili a solution if we add any solution of the corresponding homogeneous

squation o that, in general, the first-order rovibronic wavefunction term iy

(
\[J;\IJJ”(“'CC; Ry = 'HLIL (U’\] \u ny Feloet R ) - ijrmlui Ux )q)it]L]u atelec ) S

where @'} (Uy) is another, as yel. arbitrary function of Uy.

Using It&mtions {36), (40) and (41, the second-order rovibronic equation (34} can be rewritten
A =B WL = [@::3,14)1..‘:&,, + ol ]
- [[A{EL}:) +Hyy - Em_ m] CD\EI[B\]L'CD:."])\.‘IL‘.N' (+2)
I we sublract @) times equation (22) and @), times equation (23) from equation (42) we
obtuin
{HI“’ - F‘?: m} {w:\d wmo CD:JU:CI IcILcJu.n - b:ltljllq \(_LJL ni|
= [N G, - B el (43)

The condition for the solution of this equation is that
(h
<q clev

0 . .
The integration in equation (44) 18 over ryee and [H[ '+ FLILL " L[‘\j_ ) D:fm is independent of
Felee. Therefore, the condition reduces 1o

Y ey — B, o, ) =0, ()

{H ”J—Q—E

clec.r EJE\L) mJ @ :wttlljc =0. (45)
Equation (45) determines the vibrational wavefunction ¢y = O and the second-order correc-
tion to the vibronic energy.

[t is instructive to stop here in the development and to ponder the result, I we multimy
equation (45) by «* then « !11\, is the vibrational kinetic energy of the nuclei. «~ FLjLL , acts
as g potential function for the nuclear vibrational motion (note that it is a quadratic function
of Un}. and «"EL)  is the second-order correction (o the vibronic energy that is derived. At
this level of approximation the potential function for the nuclear motion is a quadratic function
of the nuclear displacements Upt as a result we will call this the harmonic Born-Oppenlieinier
approximation. In the harmonic BO approximation the vibronic wavelunction is determined only
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to zero order [from equation (36)] as the product of the wbmtlcml wavefunction ¢ (Uy) |from

equation (43)] and the electronic wavefunction @,je. , (Foee: #2). From equations (35), (31) and
(45) we see that the vibronic eigenvalue is the sum of Eum " ,1he electronic energy when the
nuclei are at the equilibrium configuration) and k- E[Y) | where this second-order energy correction
is obtained from the harmonic vibration wave equation squation (45). Anharmonicity, and the
rolational energies. are cf toe small an order of magnitude to be considered in the haamomc BO
approximation.

The perturbation treatment can be carried to higher order and the fourth-order result is impO|—
tant; this leads o the guartic BO epproximarion. To derive this one uses the expression for H.\L
given in equation (29). The algebra from BandQ involved in the fourth-order development is

also given in Appendix VII of Born und Huang (1954}, and we summarize it. The rovibronic
wavefunction obtained can be written as

It

Wiveum Felee, Un) {CD,(](L),]L (Un)+ Kq):]LL(UN J4 0! 7] UI\)] Ploen Fetoe; R

e
= (E]‘\'{UN )chlcmz (Felee RN) . {46)

and the rovibronic energy is obtuined by soiving an equation like equation (45, but in which
the potential function is developed to quartic powers of the nuclear clisp]'u.emenl comdinalea
UN and the Kinetic energy is the rotation—vibration kinetic energy operator x2Hy, + & oy
K*Hy,. The quartic potential function is termed an ef/ame potential function since it mvolves
the effect of the electronic kinetic gnergy term fc“‘H [see equation (24)] as well as the effect of
the vibrational kinetic energy term acting on the eln_ctlolm wavefunction,

The important result is that in the (fourth-order) quartic BO approximation the rovibronic
wavefunctien s still oblained as the product of a rotation—vibration wavefunction 531-\=, that
depends only on Uy, and a single electronic wavefunction, obtained by sclving the electrenic
wave equauon at fixed nuclear coordinates. Since the electronic wavefunction is represented as
a single function it does not involve coupling with other electronic states, and the quartic BO
approximation maintains the adiabatic separation of the electronic from the lol"llmnnvlbmtmn
degrees of freedom.

Using periurbation theery for an isolated ground electronic state of a dialomic molecule Watson
(1980) shows that the eigenvalues can be written as the standard Dunfim expansion [Dunham

(1932)]
Elhmzzh\, (H ) [+ 1= a2 SN EVS

k=d] =)

where v is the vibrational quantum number, J is the rotational quantum number, and A is the
projection of the electrenic angular momentum on the molecular axis in units of i, To second
order the Dunham coefficients are given by

Y = w0y, [t e A /M A e AL M, + O (m, /M ) {(48)

where ni, is the electron mass, M, and M, are the two atomic masses. and Mo s the charge-
modified reduced muss )

feo = MMy (M, + My, - Chig ), (49)

where € is the charge number of the molecule, so that the denominator in p¢ is the total mass.
An importanl result of Watson (19801 is that the UM and the Al, are nuclear mass indepen-
dent constants, The correction represented by O(m? /M in equation (48) is too small 1o be
characterized experimentally for an isolated ground LILL[I()I]iC state, However, if there are low
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lying excited electronic states such higher-order terms would become significant. Substituting
equation (48) into equation (47) one obtains an equation that can be used in the simultaneous
fitting of rolation-vibration energy levels for all isotopomers of a diatomic melecule. The result
of such a fiting will be values for the constants Uy, and A}'\,,. Farreng ef af. (1991) make such a
fitting for the isotopomers of CO.

Bunker and Moss (1980) show for a triatomic molecule how the perturbation thecry contact
translermation procedure can be applied to eliminate matrix elements between an isolated ground
electronic state and the excited electronic states to give an effective rotation--vibration Hamilto-
nian. This effective rotation—vibration Hamiltonian containg nuclear mass dependent terms that
correct for the adinbatic effects, and for the perturbing eftect of all the excited electrenic states.

1.2 The variation theory approach

In this approach we write the solution to the rovibrenic wave equation as

Lpr\c_m("clcn‘n UNJ = Z {L-):-_”‘(UN)(D\:!ct,ﬂi'(relcv;RNL (50)

'

where @y are a complete set of (orthonormal) solutions to the electronic wave equation (17},
and the coefficient functions @ . (Uy) are to be determined. Substituting this expression intc
the rovibronic wave equation (8), multiplying on the left by &, . and integrating over the
electronic coordinates rye., we obtain the following set of coupled equations for the & ()

o’

[fN + Eclcc.n(RN) - Erve.m} (I):fi-.,; (RN) + Z Ctm‘d):‘i\i.‘_”‘(RN) =0 (51)
n

where

Cm:’ = (cbc]uc.u 'j": -+ %qu)cluc.n'» (52)

Different ievels of approximation are achieved depending on how the C,, are dealt with,
If the €, are ignored entirely we have what is traditionally called *the’ BO approximation,
which we cap summarize by writing:
Wi Fotee Un) = @8 (U0 P e n (etees R, {53)

(R
where Dy, (Felee: Riy) 18 the solution of the electronic wive equation;

/AN
i Ve + VIR Halee ) — E\: weL Ry q)e e W led Ry =, 54
e ﬁ;} ; N Feloe ) leeon (RN ) Feear (Pl N (54)

and P (L) is the solution of the rotation—vibralion wave equation:

Y.

ﬁl u vi: ﬁl ! it -
—"’T ; + M Z vf ' Vi -+ VBO.H (RN) - Er\-’c.m q)r\'.n(RN').,: 0. (55)
2y 2

2 ij=2!

with the Born~Oppenheimer potential energy function Vo, (Ry) given by
VBO‘J!(RN) - Eulcc.n (RN)~ {56)

which is isotopically independent.
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If we only ignore off-diagonal elements of €, we have ‘the adiabatic approximation’, In this
approximation the rotation-vibration function is obtained from

S
"“‘? Z — + W Z Vl ' V,' -+ Vud.n (RN) - Er\-C.m (I)’r;\l;_,; (RNJ =0, (57)

R
—m

i j=2
with the adiabatic potential energy function V,o(Ry) given by
V‘dd.n (Ry) = Eetec.n (RN) + Con
= Ee!cc.n (RN) + <®c]ec.n |j—g + ?N|®eieu.n > ] (58)

The adiabatic potential energy function depends on isotope because of the presence of the nuclear
masses in 77 + T.

The full nonadiabatic caleulation would involve making no approximations and including all
Coapr. This would give rise to an infinite number of coupled equations and each eigenfunction
would be the infinite sum of product functions given in cquation (50). However, in practice,
this complete nenadiabatic calculation is never attempled, Calculations involve either isolated
electronic states or situations in which two or three elecironic states are close in energy and for
which their interaction has to be treated explicitly.

Several of the chapters in this book are concerned with Lhe study of the rotation—vibration
energies in an isolated ground electronic state, and the BO approximation is assumed, This means
that the rotation-vibration energies are obtained by solving

h2 N v.‘2 52 A m
= ot T D Vi Vit Va(Ry) ~ Eu | 97 (Ry) =0, (59)
=2 i j=2

where for the ground (1 = 0) electronic state we wrile
Veo(RN) = Edlee 0(RN) = Eetec.0(RN") (60)

with RY} being the ground electronic state equilibrium nuclear configuration. However, the chapter
by Yarkony and the chapter by Buenker er af, are particularly concerned with the situation when
two of more electronic potential energy curves Elelee. (R} come very close for certain internuclear
separations in a diatomic molecule. In this case nonadiabatic effects due to the coupling of such
close lying states are explicitly considered. Also the chapter by Jensen, Osmann and Bunker on the
Renner effect, and the chapler by Barckholtz and Miller on the Jahn—Teller effect, consider situa-
tions in pelyatomic melecules when tlwo polential energy swrfaces are degenerare at a particularly
symmelrical nuclear configuration. Nonadiabatic effects have again to be explicidy introduced.
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